
NAVAL POSTGRADUATE SCHOOL

THESIS

REVISING M-LAYER: COMPLEX EXPONENT REPRESENTATION

by

Yin Yuan Han

March 1992

Thesis Advisor:

Hung-Mou Lee

Approved for public release; distribution is unlimited.

4 24 158

92-10720

UNCLASSIFIED							
SECURITY CLASSIFICATION OF THIS PAGE	ORT DOCUMENTATION	ONDAGE		<u> </u>			
		· · · · · · · · · · · · · · · · · · ·					
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS					
2a. SECURITY CLASSIFICATION AUTHORITY	,	3. DISTRIBUTION/A					
2b. DECLASSIFICATION/DOWNGRADING SC	CHEDULE	Approved for p	oublic release	; distributi	on is unlimited.		
4. PERFORMING ORGANIZATION REPORT N	iUMBER(S)	5. MONITORING O	RGANIZATION R	EPORT NUMB	ER(S)		
6a. NAME OF PERFORMING ORGANIZATIO Naval Postgraduate School	6b. OFFICE SYMBOL (If applicable) EC	7a. NAME OF MOR Naval Postgra	· · · · · · · · · · · · · · · · · · ·	NIZATION			
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City	, State, and ZIP C	ode)			
Monterey, CA 93943-5000		Monterey, CA					
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT ID	ENTIFICATION	N NUMBER		
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FU	NDING NUMBER	rs			
•		Program Element No.	Project No.	Task No.	Work Unit Accession Number		
11. TITLE (Include Security Classification)				1			
REVISING M-LAYER: COMPLEX EXPO	NENT REPRESENTATION						
							
12. PERSONAL AUTHOR(S) YIN YUAN	HAN						
13a. TYPE OF REPORT 13b. Thesis From	TIME COVERED To	14. DATE OF REPOR 1992 March	T (year, month, o	day) 15. P/	AGE COUNT		
16. SUPPLEMENTARY NOTATION The views expressed in this thesis Department of Defense or the U.S.	are those of the author a Government.	and do not reflect	the official po	olicy or posi	ition of the		
17. COSATI CODES	18. SUBJECT TERMS (c	continue on reverse if	necessary and in	dentify by blo	ck number)		
FIELD GROUP SUBGRO	UP Tropospheric	ic Propagation					
19. ABSTRACT (continue on reverse if nece	ssary and identify by block nu	mber)					
The waveguide mode tropospheri Command Control and Ocean Suris revised for greater accuracy, spextended complex number represe group of Airy function computatio checking procedure for determinic locating algorithm is introduced wobserved. The revision has been do recommended that the mode searce completely revised for better perfections.	veillance Center, Resear eed and stability. The ac- entation into the represe in subroutines. This accu- ing the proper method to which improves the effici- ocumented and the new part of the protocol, not just the se	ch, Development curacy improven ntation by the co- tracy improveme- evaluate the heig ency of mode sear program source c	t, Test and En nent is achiev mplex expone nt makes it p tht gaing fund rch and elimi ode has been	ed first by on then by ossible to intion. Final nates the ledelivered to	Division (NRaD), converting the re-writting the nplement a self-ly, a new mode ooping problem o NRaD. It is also		
20. DISTRIBUTION/AVAILABILITY OF ABSTI		21. ABSTRACT SEC	URITY CLASSIFIC	ATION			
22a. NAME OF RESPONSIBLE INDIVIDUAL	- One Ostro	22b. TELEPHONE (Include Area coo	le)	22c. OFFICE SYMBOL		
Hung-Mou Lee		(408)646-2846			EC/Lh		

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED

Approved for public release; distribution is unlimited.

REVISING M-LAYER: COMPLEX EXPONENT REPRESENTATION

by

Yin Yuan Han Lieutenant Commander, Taiwan Navy B.S., Chinese Naval Academy, 1982

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

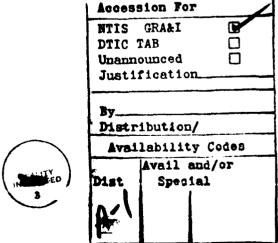
March 1992

Yin Yuan Han,

Yin Yuan Han,

Approved by:

Hung-Mou Lee, Thesis Advisor


Lawrence J. Ziomek Second Reader

Michael A. Morgan, Chairman

Department of Electrical and Computer Engineering

ABSTRACT

The waveguide mode tropospheric propagation effect prediction program, M-Layer, originally written by Naval Command Control and Ocean Surveillance Center, Research, Development, Test and Engineering Division (NRaD), is revised for greater accuracy, speed and stability. The accuracy improvement is achieved first by converting the extended complex number representation into the representation by the complex exponent then by re-writing the group of Airy function computation subroutines. This accuracy improvement makes it possible to implement a selfchecking procedure for determining the proper method to evaluate the height gain function. Finally, a new mode locating algorithm is introduced which improves the efficiency of mode search and eliminates the looping problem observed. The revision has been documented and the new program source code has been delivered to NRaD. It is also recommended that the mode search protocol, not just the mode locating algorithm introduced in this revision, be completely revised for better performance.

TABLE OF CONTENTS

I. INTRO	DDUCTION	1
A.	M-LAYER	2
В.	EXTENDED COMPLEX NUMBER REPRESENTATION	5
C.	OTHER REVISIONS	7
H DDOG	ND A M DEVECTONS	0
II. PROC	GRAM REVISIONS	y
A.	ADDITION SUBROUTINE	13
B.	AIRY FUNCTION EVALUATION	14
	1. XCDAIT	14
	2. XCDAIG	14
C.	MODE LOCATING	15
	1. FNDMOD	17
	2. FZEROX	17
	3. FINDFX	18
	4. ROOTS	19
D.	EVALUATING A_i AND B_i	20
III. CON	CLUSIONS AND RECOMMENDATIONS	32

A.	Performance	32
В.	Recommendations	38
APPEND	IX A: SUBROUTINE XCADD	39
APPEND	IX B: SUBROUTINE FZEROX	42
APPEND	IX C: SUBROUTINE ROOTS	54
APPEND	IX D: SUBROUTINE ABCOEF	58
LIST OF	REFERENCES	68
INITIAL	DISTRIBUTION LIST	69

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to Professor Hung-Mou Lee for his professional guidance, invaluable advice and moral support throughout the thesis preparation period.

Special thanks are due to Professor Lawrence J. Ziomek for his careful review and constructive suggestions to the thesis work.

I. INTRODUCTION

M-Layer is a FORTRAN program for computing the propagation factor of an electromagnetic (EM) wave in a stratified atmosphere. It is desirable to extend the capability of this program to include a layer of random medium representing the airocean interface. To achieve this goal, there are many basic theoretical problems which have to be answered. First of all, the effect of the earth curvature in this program is taken care of through the classical earth-flattening approximation [Ref. 1], but the result [Ref. 2] does not agree with the more recent diffraction theory of Fock [Ref. 3] near the surface of the earth. Then there is the question about the better method to model the atmospheric refractive index profile, either piecewise linear or quadratic, to be resolved by a new earth-flattening approximation under development at NPS. The new approximation will also determine the functions to be used for the representation of the EM fields in each layer through uniform asymptotic theories. Within some proper region, these new functions are expected to reduce to the Airy functions utilized by M-Layer. The evolutionary nature of this effort prompted this review to improve the inner workings of the M-Layer program. In particular, the subroutines to search for the modes and those for evaluating the Airy functions will remain as an important part of a program investigating questions about EM wave propagation by solving the related boundary value problem.

It can never be overemphasized that a boundary value problem which includes a layer of random medium or some range dependent inhomogeneity, set up according to the Maxwell equations, will include backscattering in its solution. This is in sharp contrast to those numerical procedures based on the parabolic approximation to the wave equation for which the backscattering is completely ignored.

In what follows, the M-Layer program and the reasons for replacing the extended complex numbers with their complex exponent representations are discussed, together with some other problems encountered and resolved during this investigation.

A. M-LAYER

In M-Layer, the index of refraction of the atmosphere is assumed to be height dependent and is approximated with a continuous piecewise linear profile. The classical earth-flattening approximation is utilized to allow the use of the cylindrical coordinate system while retaining the effect of the curvature of the earth. This is done simply by substituting the index of refraction with the modified index of refraction, which also has a piecewise linear profile [Ref. 1].

The source of the EM radiation is assumed to be either a vertical electric dipole or a vertical "magnetic dipole", with the latter providing an approximation to the radiation of a horizontal electric dipole. The dipole is located along the positive z-axis of the cylindrical coordinate system while the origin is sitting on the ground. The x-y plane is the 'flattened' earth surface. After carrying out the Hankel

transform along the radial direction, the resulting spectrum of the Hertzian dipole field within each layer of a linear segment of the modified refractive index profile is reduced to a linear combination of the Airy functions. Specifically, the layers are numbered to increase with height, with the first layer being the one above the ground. The spectrum of the Hertzian dipole field is proportional to the product of the values, at the transmitter height and at the receiver height respectively, of the height-gain function. At a height within the i-th layer, the height-gain function is given by [Ref. 4]:

$$f_i(\rho,z)=B_i(\rho)[A_i(\rho)k_1(q_i)+k_2(q_i)]$$
, (1)

where ρ is the radial component of the propagation vector and is also the spectral variable of the Hankel transform; hence it is the same throughout all layers. It is a complex variable whose imaginary part represents the radial attenuation rate of the spectral component of the Hertzian dipole field. Under the classical earth-flattening approximation, the spectrum of the Hertzian dipole field contains a discrete portion and a branch cut. The discrete spectrum gives rise to the creeping wave modes diffracted by the earth surface and the dielectric waveguide modes supported by the layered atmosphere. The contribution from the branch cut is usually negligible, especially for the field in the shadow of the earth. The M-Layer program locates the discrete spectrum for modes having a radial attenuation rate below a predetermined value. Contributions from these modes determine the propagation factor of the wave.

The variable q_i in the i-th layer is a dimensionless linear function of height z with the free space wavenumber k, the modified index of refraction m_i at the lower boundary $z = z_i$, the slope of the modified index of refraction $\alpha_i/2$ and ρ as parameters:

$$q_{i} = \sqrt[3]{\left(\frac{k}{\alpha_{i}}\right)^{2}} \left(m_{i}^{2} + \alpha_{i}(z - z_{i}) - \frac{\rho^{2}}{k^{2}}\right). \tag{2}$$

The height dependence of the field is given in terms of the functions $k_1(q_i)$ and $k_2(q_i)$, which are proportional to the Airy functions $Ai(-qe^{j2\pi/3})$ and $Ai(-q_i)$ respectively. Of these two functions, at a height so large that q_i is large and positive, $k_1(q_i)$ represents a downward going wave and $e^{j4\pi/3}k_1(q_i)+k_2(q_i)$ represents an upward going wave. The coefficients A_i and B_i are determined by the conditions on the continuity of the Hertzian dipole field and its derivative across layer boundaries and by the normalization condition that the integral of the square of the height-gain function over all height equals unity.

To fulfill the radiation condition, the highest layer is given the same refractive index as the free space above it and only the outgoing wave is allowed within this layer. Below the 'flattened' earth surface, the field is assumed to be a plane wave propagating downward. Hence, only the normalization factors are required in the highest layer and in the ground. By assigning B_i to unity in the highest layer, all the coefficients A_i and B_i can be determined, according to the boundary conditions, to within a multiplicative factor for B_i . This multiplicative factor is then deduced from

the normalization condition. This procedure can also be carried out from the ground level up. That these coefficients can be computed either from the highest level down or from the lowest level up is a result of the fact that ρ belongs to the discrete spectrum of the Hertzian dipole field. Consequently, agreement between these two ways of evaluating the A_i and B_i coefficients confirms that a mode has been located accurately.

B. EXTENDED COMPLEX NUMBER REPRESENTATION

The discrete spectrum of the Hertzian dipole field corresponds to the zeroes of the modal function which is a determinant whose elements consist of $k_1(q_i)$ and $k_2(q_i)$ at the layer boundaries. Numerically, the magnitude of this modal function causes overflow and underflow problems as $k_1(q_i)$ or $k_2(q_i)$ becomes exponentially large or small for complex q_i values. In the M-Layer program, to overcome this problem, a complex number is written as a scaled number, which is complex, multiplied by a scaling factor which is an integer power of e, the base of natural logarithm. This integer is chosen so that the greater of the absolute values of the real part and the imaginary part of the scaled number lies within $e^{\pm 1}$. A complex number written in this form is called an extended complex number. Multiplication of two extended complex numbers requires summing the two integer exponents in addition to carrying out the regular complex multiplication of the scaled numbers. Addition of two such numbers is achieved through the use of an addition subroutine: the larger scaling factor is factored out of both addends before they are combined.

The scaling factor is adjusted after each addition and after a sequence of multiplications to make sure that the resulting scaled number is still within the desired range. Addition is troublesome when the two numbers to be added nearly cancel each other. Under this circumstance, the scaling factors of the two numbers are identical and both the real parts and the imaginary parts of the scaled numbers are almost equal with opposite signs. It is clear that the real part and the imaginary part of the sum lose their accuracies to different degrees; hence the phase angle may incur substantial error. To remedy this situation, interpolation procedures have to be devised.

As two complex numbers come close to cancel each other, they must be out of phase by almost 180 degrees. By factoring out the square root of their product instead of the scale factor, the resulting addends become reciprocal to each other, both lying within an identical small angle to, and on the same side of, the imaginary axis. They are close to the unit circle, but one is on the inside and the other is on the outside. Taking out further a phase factor of $\pi/2$ after writing the addends in their exponential forms, the exponents become small numbers for which a Taylor series expansion of the exponential function converges rapidly and can be used for interpolating the sum to achieve higher accuracy. Note that after the extra phase factor of $\pi/2$ is removed from the addends, it is actually the difference of the resulting two reciprocals which is computed. This procedure effectively picks the direction on the complex plane along which the addends are almost opposing each

other to carry out their cancellation. The resulting sum has a phase angle nearly perpendicular to this chosen direction.

It is evident that the representation of a complex number by its complex exponent of base e provides better phase accuracy for addition. A one-to-one correspondence can be achieved by restricting the imaginary part of this exponent to within $-\pi$ and π . This will be called the exponential representation or the complex exponent representation henceforth. It is convenient for multiplication: adding the complex exponents of the two factors will suffice. Conversion of the M-Layer program from the extended complex number to the complex exponent representation has been carried out.

C. OTHER REVISIONS

As better precision is achieved, problems with the mode search procedure and the evaluation of the A_i and B_i coefficients become severe. They are thoroughly investigated and resolved. For mode search, although the division of the region of interest into "contour rectangles" and further into square "meshes", and the search pattern to move around the sides of a "contour rectangle" to find and follow "phase lines" into it are kept, the basic assumption of Shellman and Morfitt [Ref. 5] that both the real and the imaginary parts of the modal function are linear along every edge of a mesh square is completely abandoned. For the evaluation of the A_i and B_i coefficients, the "test for evanescence" conditions have been removed. A condition to determine whether to evaluate the coefficients from the ground level up or from

the top level down has been fomulated and incorporated into the program. This accomplishment leads to the relaxation of mode locating accuracy requirements which, combined with the improved precision of the revised program, makes the first order Newton-Raphson iteration unnecessary. The specific changes in the program and the resulting gains in speed, accuracy and execution stability are discussed in the following chapters. Suggestions to completely revise the mode search protocol to do without the "contour rectangles" and to look for the modes according to their range attenuation rates are also provided.

II. PROGRAM REVISIONS

M-Layer is structured into three parts: setup, mode search and propagation factor evaluation. The main input is the modified refractive index values at specified heights so that a piecewise linear profile can be constructed. If the mode locations for the particular profile are available from a previous run of the program, they can also be included in the input and the mode search procedures will be bypassed. The various ranges and transmitter and receiver heights for which propagation factors are desired are also specified. The subroutine WVGSTDIN is called to input the information from an ASCII data file. The program then computes the constants to be used for mode search and propagation factor evaluation. The mode search is performed with the subroutine FNDMOD. The MODSUM subroutine is then invoked to first compute the A_i and B_i coefficients as explained in the Introduction, then compute the propagation factor and the propagation loss. The complete program structure is given in Figures 1 and 2. There are several other subroutines which are not included in these and other figures, such as DHORIZ for computing the horizon distance between a transmitter and a receiver for reference purpose; CHKMOD, a maintenance routine for removing zeroes from reported mode locations by older versions of the program; or AO2H2O, a routine to compute the atmospheric absorption coefficient due to oxygen and water vapor. They will not be

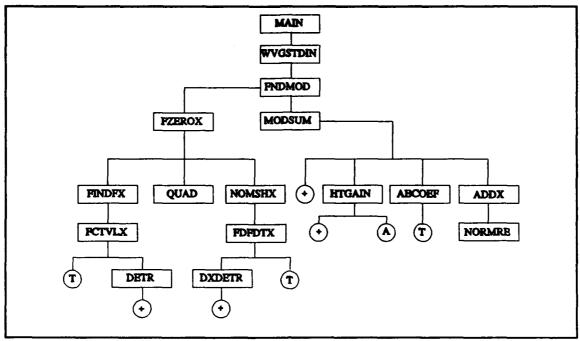


Figure 1 Original M-layer subroutines structure.

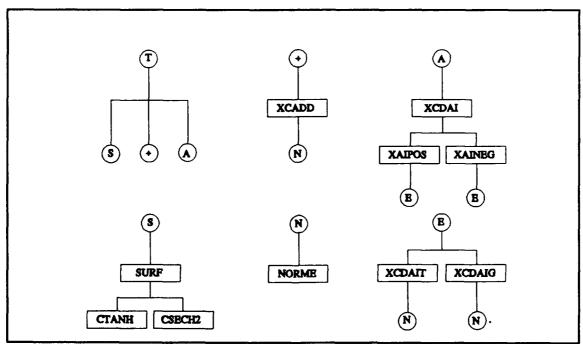


Figure 2 Original M-layer subroutines structure (continued).

discussed as they do not contribute directly to the main purpose of this program of locating the modes and computing the propagation factor.

The program structure has been altered as shown in Figures 3 and 4. Since the A_i and B_i coefficients have to be evaluated only once, they are now obtained through a call to the subroutine ABCOEF directly from the main program right after the modes are located. Several subroutines are dropped in this revision for various reasons: The subroutines NORME and NORMRE are eliminated because they are no longer needed due to the change in complex number representation; the subroutines NOMSHX, FDFDTX and DXDETR are not used because the modes are now located with adequate precision without further iteration; the subroutine ADDX is not listed separately because it is called only once and has been reduced to only a few lines which are placed where the subroutine is called in the original program. On the other hand, changes in the mode search algorithm require the addition of two new subroutines: SURF0 is a modified and simpler version of SURF; ROOTS replaces QUAD. Due to the change in complex number representation, all subroutines listed below FNDMOD and MODSUM have been revised, including their input/output lists. But except for SURFO and ROOTS, the utilities of these subroutines are the same as those of the original ones. Descriptions of these subroutines can be found in the report by Yeoh [Ref. 4].

The most significant changes have been made in XCADD, XCDAIT and XCDAIG for adopting the complex exponent representation and improving

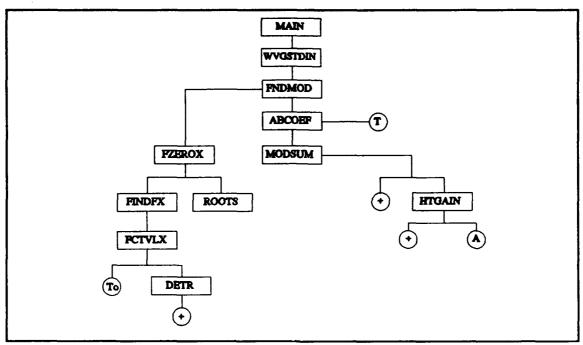


Figure 3 New M-layer subroutines structure.

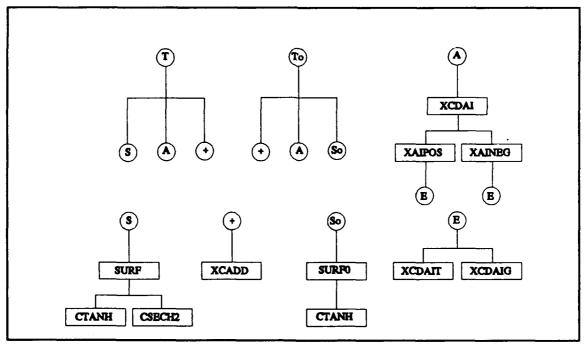


Figure 4 New M-layer subroutines structure (continued).

computation speed and accuracy; in FZEROX, FINDFX, ROOTS and SURF0 for stabilizing and simplifying the mode search algorithm; and in ABCOEF for implementing the criteria to determine the reliable manner for evaluating the A_i and B_i coefficients. These changes are discussed in the sections below. The source code listings of the completely new subroutines XCADD and ROOTS and the significantly revised subroutines FZEROX and ABCOEF, which are compiled with Microsoft FORTRAN version 5.00, are attached as Appendices A through D. Validation of the revised program has been carried out at 9.6 GHz for all the 21 profiles listed in Yeoh [Ref. 4].

A. ADDITION SUBROUTINE

XCADD is the subroutine implementing the addition of complex numbers under the representation by their exponents. Given the double precision complex numbers z_1 and z_2 as the exponents of the addends, this subroutine returns the exponent of the sum. Since a double precision number has an accuracy of 53 bits, if the real parts of z_1 and z_2 differ by more than 53 bits, the exponent of their sum will simply be the one of the greater real part. When cancellation becomes serious, the square root of the addends is factored out first. Then the four-term Taylor series expansions of the resulting reciprocals are summed. Since the leading term of the sum of the Taylor series is a good estimate of the sum of the reciprocals and the relative error of the four-term Taylor series sum is proportional to the fourth order

of this leading term, the threshold for invoking this interpolation procedure is set at the highest possible value of 2^{-14} allowed under double precision. Experimenting with this procedure shows that this interpolation improves accuracy as long as the threshold is set at a number between 2^{-24} and 2^{-14} .

B. AIRY FUNCTION EVALUATION

Similar to the original program, the evaluation of the Airy function adopted the algorithm prescribed by Schulten, et. al. [Ref. 6]. In the new program, changes are made to follow the advice of Schulten, et. al. concerning the region within which a Taylor series expansion, instead of the faster Gaussian quadrature, has to be used to achieve double precision accuracy. Other changes in implementing the algorithm are described below.

1. XCDAIT

Due to the similarity in their Taylor series coefficients, the Airy function and its derivative are evaluated within a single loop. The relative accuracy of the derivative of the Airy function is set at the double precision limit of 2^{-54} .

2. XCDAIG

Six term Gaussian quadrature is used for evaluating the Airy function and its derivative outside the circle of radius 4.97 centered at (0.90, 2.80) on the complex plane. The use of four-term quadrature outside a radius of 15 from the origin suggested by Schulten, et. al. is not adopted. The six-term quadrature in this range

retains a higher accuracy while overall speed improvement by using both the fourterm and the six-term quadrature appears to be minimal.

C. MODE LOCATING

As explained in the Introduction, the modes are located at the zeroes of the modal function. These zeroes are located on the upper complex \mathbf{q}_{11} plane. Here \mathbf{q}_{11} is the value of q₁ on the earth's surface, which, according to Eq.(2) of Chapter I, is a linear function of ρ^2 . For a horizontally propagating mode, ρ/k is close to unity. The maximum range attenuation rate specified for the desired modes, which corresponds to a limit on the imaginary part of ρ , determines approximately the upper bound for the imaginary part of the q_{11} complex plane to be searched for modes. The Shellman and Morffit mode search procedure first divides the search region horizontally into "contour rectangles" each of which spans 160 meshes along the real q₁₁ direction. A mesh is a square whose size is an adjustable parameter of the order 10⁻⁴ at 9.6 GHz for most of the cases considered herein. This parameter is determined by the frequency and the slope of the modified index of reflection in the lowest layer of the profile. The search commences at the top left corner of the "contour rectangle" whose left edge has a real coordinate value close to the difference of the real parts of the q₁₁ values, with the minimum modified index of refraction and the index near the surface substituted into Eq.(2) of Chapter I. After the search over the initial rectangle is completed, the program moves to search the

next rectangle until a specified maximum number of modes are found or a specified number of "contour rectangles" have been searched.

The search for zeroes makes use of the fact that a real function changes sign when it crosses a simple zero. Since a zero of a complex valued function F(q) is where both its real part and imaginary part vanish, a necessary condition for a point q_m to be a zero is that it is on the intersection of two curves defined by $Im\{F(q)\} = 0$ and $Re\{F(q)\} = 0$. The program searches around a "contour rectangle" for a sign change in $Im\{F(q)\}$ across an edge of a mesh bordering the side of the "contour rectangle" to determine that a line of $Im\{F(q)\} = 0$ has been encountered. The search then follows this line into the meshes within the "contour rectangle", checking each mesh to see if a curve $Re\{F(q)\} = 0$ enters the mesh under investigation. All these steps make use only of the assumption that the zeroes of the modal function are simple. Once both the curve $Im\{F(q)\} = 0$ and the curve $Re\{F(q)\} = 0$ are determined to be present within a mesh, the location of their possible interception is estimated. An algorithm for this estimate is required.

Shellman and Morffit [Ref. 5] introduced a further assumption that the functions $Re\{F(q)\}$ and $Im\{F(q)\}$ are both linear along the edges of a mesh. Based on this assumption, they try to estimate the locations where the curve $Im\{F(q)\}$ = 0 enters and leaves a mesh square, and the location of q_m if a curve $Re\{F(q)\}$ = 0 also enters the same mesh. It is obvious that information about the locations where the curves enter and leave the mesh square is not essential. Furthermore, in the 18

m duct height case, the scheme causes the search path to loop around four contiguous meshes until the search is broken up by the limit on the number of meshes to be investigated. Replacing their technique requires major changes in the subroutines involved. A new subroutine ROOTS is provided to estimate the location of the intersection of the curves $Im\{F(q)\} = 0$ and $Re\{F(q)\} = 0$. These changes eliminate the looping problem.

Another problem is encountered in the 40 m duct height case when a large number of zeroes are found in the lower half complex q_{11} plane. These zeroes appear to belong to the reflection coefficient on the wrong sheet of the branch cut and are not waveguide modes. This happens because the search region has been extended below the real q_{11} axis to avoid the singularity in SURF. The problem with this singularity should have been solved within SURF, especially because it occurs only when the derivative of the subroutine output variable **gamma** with respect to q_{11} is computed. Since this derivative is not needed during mode search, the extension of the search region to the negative q_{11} plane is unnecessary. A simplified routine, SURF0, is introduced which is exactly the same as SURF except that it does not evaluate the derivative of **gamma**. By using this subroutine instead of SURF, the search path in the revised program does not avoid the real and the imaginary axes.

1. FNDMOD

The search region is limited to the upper half q_{11} plane. All the modes found are ordered according to their range attenuation rates before those numbered beyond the maximum modes allowed are abandoned.

2. FZEROX

Since the curve $Im\{F(q)\}=0$ enters into a mesh square through an edge, the values of Im{F(q)} must change sign over the end points of either one or all three other edges. When there is only one other edge across which $Im\{F(q)\}$ changes sign at its end points, it is the edge across which the curve $Im\{F(q)\} = 0$ exits the mesh square. Ambiguity arises when all edges indicate a change of sign at their end points. When this occurs, a "right turn rule" is adopted which assumes that the curve exits the edge to the right of the one along which it enters the mesh square. Such a rule avoids the retracing of the search path when the mesh square is revisited as entering this same mesh square from the left side of an edge after exiting from its right side requires a crossing of the $Im\{F(q)\} = 0$ curve, which is prohibited under the simple zero assumption. On the other hand, the actual curve may have turned left and then returns to this mesh square, i.e., following a "left turn rule." Under such a scenario, this wrong choice would have left a segment of the curve not searched. This difficulty has not been observed during testing. In fact, the ambiguous situation seldom occurs. Note also that, as remarked above, two lines of $Im{F(q)} = 0$ do not cross each other unless a higher order zero is present. Hence, only a "right turn rule" or a "left turn rule" for the curve to exit the mesh is allowed.

Exiting the opposite edge demands a pair of crossing $Im\{F(q)\} = 0$ curves within the mesh square. This violates the assumption that all zeroes are simple. Also note that, the possibility of vanishing $Re\{F(q)\}$ or $Im\{F(q)\}$ values at the corners of a mesh square is eliminated through a small adjustment in FINDFX.

3. FINDFX

Both the vertical shift away from the real q₁₁ axis and the horizontal offset away from the imaginary axis are unnecessary and have been removed from this routine. Furthermore, as a result of converting to the complex exponent representation, the sine and cosine of the argument of the modal functions are examined for sign changes in FZEROX. This is implemented in FINDFX by including the cosine and sine values of the argument of the modal function in the output list. To avoid the indeterminate case when either the real or the imaginary part of the modal function becomes zero at any corner of a mesh square, the argument for computing the cosine and sine values is increased by 2⁻⁵³ when this occurs. This is equivalent to a consistent small distortion of the particular corner of the mesh square. This will not cause any error in locating the zero because FINDFX still returns separately the unmodified exponent of the value of the modal function.

4. ROOTS

Assuming that the modal function is analytic within the mesh, this subroutine utilizes the values of the modal function at the four corners of the mesh

square to determine the Taylor series expansion coefficients of the modal function to the third order. The roots of this cubic polynomial are then located using Cardan's solution by radicals. If the higher order coefficients fall below machine resolution for a root within the mesh square, these coefficients are regarded as zero and the order of the polynomial is reduced and can be solved more expediently. If the function is determined to be constant over the mesh square, the center of the square is taken as the root location.

D. EVALUATING A_i AND B_i

As discussed in the Introduction, the A_i and B_i coefficients can be evaluated either from the top level down or from the lowest level up. These two procedures are simply called "integration down" and "integration up", respectively, in the original documentation [Ref. 4]. The location of a mode has been called an eigenvalue. That the results of "integration down" and "integration up" agree is a manifestation that the eigenvalue is located accurately.

The subroutine ABCOEF evaluates the coefficients A_i and B_i for each mode. If the range attenuation rate for a mode is greater than 0.1 dB/km, the coefficients are evaluated from the lowest layer up. Otherwise, it is evaluated from the top layer down. It is obvious that such a rule must be implemented because the results of "integration up" and "integration down" do not agree for many modes. Efforts are made to determine the cause of this discrepancy and to devise a means to resolve it.

Investigation reveals that inadequate precision in the location of the modes is one source of the problem. Since the B_i coefficients depend on the A_i coefficients, while the A_i coefficients are obtained directly, only the A_i coefficients need to be examined. The A_i coefficients of the six modes of lowest range attenuation rates for all 21 profiles except the one without evaporation duct are computed using eigenvalues of different accuracy controlled by the first order Newton-Raphson iteration method. Table 1 shows the A_i coefficient computed with the new program. They are arranged from the top layer down. In the i-th layer, the A_i coefficient computed by "integration downward" depends only on A_{i+1} in the layer above while that computed by "integration upward" depends only on A_{i-1} in the layer below. Hence in each layer, the coefficient obtained by "integration downward" is listed above that obtained by "integration upward". There are five sets of A_i values listed, with the magnitudes given in powers of 10, and the phase given as a multiple of π . They are obtained from eigenvalues of decreasing accuracy -the one used to compute the left most column being the most accurate. The first set is computed using an eigenvalue having a relative accuracy of 2^{-40} . The second set uses an eigenvalue with a relative accuracy of 2^{-36} . The relative accuracy of the eigenvalue for the third set is 2⁻³⁶. For the fourth set, the first order Newton-Raphson iteration of the mode location is set at an absolute accuracy of 0.03 of the mesh size, same as that specified in the original program. The eigenvalue for the right most set is the mode location estimated by ROOTS without modification by the Newton-Raphson iteration. It is

TABLE 1. IMPROVING A, ACCURACY WITH EIGENVALUE 18 M DUCT

	mode 4 q-eigenvalue: .1888574325176803D+00 .1080678744810598D-01									
		ifference:					. 120-11	.120-10	.150-06	.600-07
Loves	# Ai	(daym	4:	doun		/down	A .	i/doun		4 i (do. m.)
		•						-		Ai/down
layer	# A1	/up	Al/	/up	Al	/up	^	i/up	•	Ai/up
18	.026	1 .6719	.0261	.6719	.0261	.6719	.0261	.6719	.0261	.6719
18	.026	1 .6719	.0261	.6719	.0261	.6719	.0261	.6719	.0261	.6719
17	062	5 .6368	0625	.6368	0625	.6368	0625	.6368	0625	.6368
17	062	5 .6368	0625	.6368	0625	.6368	0625	.6368	0625	.6368
16	.013	9 .7440	.0139	.7440	.0139	.7440	.0139	.7440	.0139	.7440
16	.013	9 .7440	.0139	.7440	.0139	.7440	.0139	.7440	.0139	.7440
15	. 121	6 .6353	.1216	.6353	.1216	.6353	.1216	.6353	.1216	.6353
15	.121	6 .6353	.1216	.6353	.1216	.6353	.1216	.6353	.1216	.6353
14	.016		.0166	.5471	.0166		.0166	.5471	.0166	.5471
14	.016	6 .5471	.0166	.5471	.0166		.0166	.5471		
13	156		1565	.5310	1565		1565		1565	.5310
13	156	5 .5310	1565	.5310	1565	.5310	1565	.5310	1565	.5310
12	384	2 ,5659	3842	.5659	3842	.5659	3842	.5659	3843	.5659
12	384	2 .5659	3842	.5659	3842	.5659	3842	.5659	3842	
11	-2.200	28081	-2.2002	8081	-2.2002	8081	-2.2002	8081	-2.1909	8068
11	-2.200	28081	-2.2002	8081	-2.2002	8081	-2.2002	8081	-2.2002	8081
10	-5.464		-5.4648	.2423	-5.4648	.2423	-5.4654	.2423	-4.1810	2161
10	-5.464	8 .2423	-5.4648	.2423	-5.4648	.2423	-5.4648	.2423	-5.4647	.2423
9	-3.697	46979	-3.6974	6979	-3.6974	6980	-3.6783	7012	-6.4611	2121
9	-3.697	86978	-3.6978	6978	-3.6978	6978	-3.6978	6978	-3.6977	6978
8	.345	9 7982	.3459	7982	.3460	7982	.3482	7926	-1.9078	9148
8	.345	97983	.3459	7983	.3459	7983	.3459	7983	.3459	
7	.409	8 .8794	.4098	.8794	.4098	.8794	.4136	.8836	-1.0899	.5364
7	.409	7 .8793	.4097	-8793	.4097	.8793	.4097	.8793	.4097	
6	.348		.3480	.8161	.3480	.8161	.3526	.8205	5879	.4005
6	.347	9 .8160	.3479	.8160	.3479	.8160	.3479	.8160	.3479	.8160
5	.292		.2923	.8304	.2923	.8304	.2972	.8358	3490	.3749
5	.292	2 .8303	.2922	.8303	.2922	.8303	.2922	.8303	.2922	.8303
4	.235	9 .8619	.2359	.8619	.2360	.8619	.2408	.8690	2058	.3731
4	.235	8 .8618	.2358	.8618	.2358	-8618	.2358	.8618	.2358	.8618
3	. 183		.1831	.8910	.1832	.8910	.1878	.9003	1250	.3753
3	. 183	1 .8908	.1831	.8908	.1831	.8908	.1831	.8908	. 1831	.8908
2	.130		.1300	.9149	.1301	.9149	.1342	.9275	0734	.3750
2	.130	0 .9146	.1300	.9146	.1300	.9146	.1300	.9146	.1300	.9146
1	.058		.0586	.9335	.0588	.9335	.0618	.9545	0318	.3670
1	.058		.0586	.9331	.0586	.9331	.0586	.9331	.0586	.9331

clear that, for this mode, the difference between these two methods of computing the coefficients becomes negligible as the accuracy in mode location increases. For example, in the 8-th layer, the magnitude of A_i computed by integrating downward changes from -1.9078 to 0.3482, to 0.3460 to 0.3459, which agrees with the result computed by integrating upward. The phase follows the same trend to an agreement within 0.001π . Table 2 shows a similar set of output, but the coefficients fail to agree even when the relative accuracy is increased to 2^{-40} . Note that the actual difference in both the real part and the imaginary part of the two most accurate eigenvalues is about 2⁻⁴⁸. Double precision accuracy appears to be insufficient for the coefficients computed with these two methods to agree for all modes. Some interesting features can be observed in both tables, which are present in all 120 sets of values computed. When disagreement is present in one set of A_i coefficients, such as those in either Table 1 or Table 2, the change toward smaller differences with improving eigenvalue accuracy occurs mainly in one way of computation, but not both. For example, in Table 1, the values of "integration downward" improve with better eigenvalue accuracy, while those computed by "integrating upward" change little. In Table 2, the results of "integration downward" are the ones that are holding steady as the accuracy in eigenvalue improves. Furthermore, when disagreement occurs, the layer in which the A_i coefficient has the smallest magnitude, i.e., the one having the most negative power of 10, divides the table into two parts. The results of two different ways of computation agree in the layers above this one if they disagree in those below it, and vise versa. No explanation will be attempted. Instead, practical rules are drawn up

TABLE 2. IMPROVING A ACCURACY WITH EIGENVALUE 36 M DUCT

	3		igenvalue:			13920+00		29405720070			
eige	envalue	dif	ference:	.380-14	.360-14	.38D-14	.360-14	160-09 -	.220-09	530-07	.280-07
laye		Ai/d Ai/u		Ai,	/down /up		/down /up		i/down i/up		Ai/down Ai/up
27 27	00 .23		.6663 .7582	0009 .2353	.6663 .7582	0009 .2353	.6663 .7582	0009 .2353	.6663 .7582	0009 .2353	
26 26	.00 01		.6678 .3659	.0007 0111	.6678 .3659	.0007 0111	.6678 .3659	.0007 0111	.6678 .3659	.0007 0111	
25	.00	122	.6657	.0022	.6657	.0022	.6657	.0022	.6657	.0022	.6657
25	-1.88		.3913	-1.8851	.3913	-1.8851	.3913	-1.8851	.3913	-1.8852	
24	.00	01	.6809	.0001	.6809	.0001	.6809	.0001	.6809	.0001	.6809
24	-7.49	714	.6081	-7.4914	.6081	-7.4914	.6081	-7.4914	.6081	-7.4914	.6081
23	-2.94		.5951	-2.9495	.5951	-2.9495	.5951	-2.9495	.5951	-2.9495	
23	-14.53	340	.7973	-14.5340	.7973	-14.5340	.7973	-14.5340	.7973	-14.5340	.7973
22 22	-12.19 -23.58		.9278 9407	-12.1956 -23.5827	.9278 9406	-12.1956 -23.5827	.9278 9406	-12,1956 -23,5827	.9278 9406	-12.1956 -23.5827	
					•••						
21 21	-35.23 -44.45	-	2502 8199	-35.2395 -45.8691	2502 .8599	-35.2395 -45.8691	2502 .8599	-35.2395 -47.4590	2502 1252	-35.2396 -47.4594	
20	-131.33	504	9570 -	131.3304	9570	-131.3304	9570	-131.3304	9570	-131.3307	9569
20	-129.01			127.6070	.0248	-127.6070	.0248	-122.9124	9081	-120.9305	
19	-25.60			-25.6088	9230	-25.6088	9230	-25.6088	9230	-25.6088	
19	-25.60	90	9228	-25.6184	9241	-25.6184	9241	-22.5644	8054	-20.2166	.7391
18 18	-13.69 -13.69		.6510 .6510	-13.6970 -13.6970	.6510 .6510	-13.6970 -13.6970	.6510 .6510	-13.6970 -13.0618	.6510 .7675	-13.6970	
			.0310	-13.6970	.6310	- 13.6970	.0310	- 13.0010	.7075	-10.8148	
17 17	-7.03 -7.03		.4145 .4145	-7.0384 -7.0384	.4145 .4145	-7.0384 -7.0384	.4145 .4145	-7.0384 -7.0308	.4145 .4179	-7.0384 -6.3129	-
								_			!
16 16	-3.31 -3.31		.2991 .2991	-3.3146 -3.3146	.2991 .2991	-3.3146 -3.3146	.2991 .2991	-3.3146 -3.3146	.2991 .2991	-3.3146 -3.3116	
15	-2.31	132	.2632	-2.3132	.2632	-2.3132	.2632	-2.3132	.2632	-2.3132	.2632
15	-2.31		.2632	-2.3132	.2632	-2.3132	.2632	-2.3132	.2632	-2.3127	
14	-1.56	669	.2415	-1.5669	.2415	-1.5669	.2415	-1.5669	.2415	-1.5669	.2415
14	-1.56	669	.2415	-1.5669	.2415	-1.5669	.2415	-1.5669	.2415	-1.5668	.2415
13	-1.08		.2352	-1.0838	.2352	-1.0838	.2352	-1.0838	.2352	-1.0838	
13	-1.08	338	.2352	-1.0838	.2352	-1.0838	.2352	-1.0838	.2352	-1.0838	
12 12	69 69		.2432 .2432	6983 6983	.2432 .2432	6983 6983	.2432 .2432	6983 6983	.2432 .2432	6983 6983	
11 11	37 37		.2712 .2712	3754 3754	.2712 .2712	3754 3754	.2712 .2712	3754 3754	.2712 .2712	3754 3754	
10	01		.3619	0102	.3619	0102	.3619	0102	.3619	0102	
10	01		.3619	0102	.3619	0102	.3619	0102	.3619	0102	

to take advantage of these facts. In Table 1, the process of "integration upward" goes through the troublesome 10-th layer and produces results which agree with the results of downward integration before the downward process goes through the 10-th layer. On the other hand, the downward integration is tripped up going across the 10-th layer and produces results which fail to agree with the results from upward integration. It is clear that the results from upward integration are the correct ones. This conclusion is further supported by the fact that improving the accuracy of the eigenvalue does not change significantly the results of upward integration. Similar argument leads to the conclusion that in Table 2, the results of downward integration are the correct values.

It can be concluded from the above observations that one of the methods of computing the A_i coefficients converges to the correct value much faster than the other. It is also found that this method of faster convergence is always able to arrive at the correct values for A_i for all the cases under investigation.

Table 3 lists the statistics of the method of integration which yields the correct A_i coefficients for each of the 120 modes investigated. The differences in magnitudes and phases in the lowest layer and in the layer below the highest are also listed. Since for most of the cases, when disagreement in A_i values occurs, the correct integration is upward -this is used as the default. To decide that downward integration should be utilized, the following steps are taken: The first A_i value of downward integration is computed and compared to the value from upward integration. If the magnitudes in dB disagree by less than 0.02 dB, their phases will

be checked. If the phases differ by less than $10^{-3}\pi$, the agreement is deemed acceptable and the A_i and B_i coefficients computed from the lowest layer up are used. Otherwise, the coefficients are re-evaluated again from the highest layer down.

Once the correct method of evaluating the A_i and B_i coefficients is used, the accuracy of the mode location becomes less critical. For all the cases investigated, the A_i coefficients obtained from mode locations estimated with or without the Newton-Raphson first order iteration differ only by 0.06 dB in magnitude and 0.0013π in phase at most. In fact, few cases show differences more than 0.002 dB and 0.0001π . The Newton-Raphson iteration is not needed. Hence the subroutines NOMSHX, FDFDTX and DXDETR are removed.

TABLE 3. STATISTICS FOR EVALUATING A, COEFFICIENT

Duct height	Mode #	Evaluating Method		Δ A _i	(dB)	$\Delta arg(A_i)/\pi$		
				Layer		Layer		
		up	down	bottom	top-1	bottom	top-1	
	1	x						
	2	x						
	3	x						
02	4	х		0.172		0.093		
	5	х						
	6	x		8.362		1.3234		
	1	x		· 				
	2	x						
	3	х		0.008		0.0002		
04	4	х		1.030		1.8717		
	5	х		7.814		1.2948	ļ	
	6	x		0.002		0.0001	<u> </u>	
	1	x						
	2	х		0.002		0.0004		
	3	x		0.522		0.0158		
06	4	х					·	
	5	хх		13.278		0.4377	ļ	
	6	x		0.002		0.0001	ļ	
	1	х		<u> </u>				
	2	х		0.002				
	3	x		0.002		0.0001	0.0001	
08	4	x		0.016		0.0026		
	5	х		4.066		0.6355		
	6	x		3.978		0.6186		

TABLE 3. CONTINUED 1.

Duct height	Mode #	Mode # Evaluating Method		$\Delta A_i $	(dB)	$\Delta arg(A_i)/\pi$	
				La	yer	Lay	yer
		up	down	bottom	top-1	bottom	top-1
	1	х					
	2	x				0.0002	
	3	x				0.0001	
10	4	x		0.04		8000.0	h
	5	х		0.206		0.0402	0.0001
	6	х		0.002		0.0001	
	1	x					
	2	х		0.006		0.0003	
	3	х		0.004			
12	4	x		1.808		0.5661	
	5	х		1.732		0.5429	
	6	x		1.472		0.0414	
	1	х		-			
	2	х		0.002		0.0001	
	3	x		0.178		0.0052	
14	4	х		0.024		0.0005	
	5	х		0.004		0.0001	
	6	х		0.85		0.4711	
	1	х					
	2	х		0.006		0.0002	
	3	х		0.004			
16	4	x		0.006		0.0001	
	5	x		0.002		0.0001	
	6	X		0.002		0.0077	

TABLE 3. CONTINUED 2.

Duct height	Mode #	Evaluating Method		$\Delta A_i $	$\Delta A_i $ (dB)		$\Delta arg(A_i)/\pi$	
				La	Layer		yer	
		up	down	bottom	top-1	bottom	top-1	
	1		х		0.008		0.0001	
	2	х		0.002		0.0001		
	3	x				0.0001		
18	4	x						
	5	х		0.016		0.0003		
	6	х		0.002				
	1		х		0.078		0.0164	
	2	x					ļ	
20	3	x		0.002		0.0001		
20	4	х				0.0008		
	5	X		0.16		0.0195		
	6	х		0.002		0.0001		
	1		x		8.708		0.239	
	2	х						
22	3	Х		0.004			 	
	4	X		0.016		0.0004		
•	5	х		0.002		0.0001		
	6 1	X		0.31		0.0117		
	2	х			0.040		0.2042	
	3		x	0.007	0.868	0.0000	0.2842	
24	***************************************	X		0.006	<u> </u>	0.0009		
	4	х		0.002		0.0001		
	5	X		0.026		0.0009		
n=	6	х		0.008	<u> </u>	0.0001	L	

TABLE 3. CONTINUED 3.

Duct height	Mode #	Mode # Evaluating Method		$\Delta A_i $ (dB)		$\Delta arg(A_i)/\pi$	
				La	yer	La	yer
		up	down	bottom	top-1	bottom	top-1
	1	х		0.002	0.002	0.0001	0.0001
	2		x		4.308		0.121
	3	x_		0.006			
26	4	x		0.002		0.0001	
	5	х				0.0001	
	6	х		0.034		0.0039	
	1		x		0.028	<u> </u>	0.0014
	2		x		4.806		0.0728
	3	x					
28	4	x					
	5	x		0.008	0.002	0.0002	
	6	х		0.004		0.0019	
	11		x		1.562		0.0165
	2	х				· ·	
20	3		х		0.718		0.2455
30	4	x			<u></u>		ļ
	5	х		0.004			
	6	x		0.724	}	0.0522	<u> </u>
	1		x		3.194		0.1648
	2	x		0.002			
22	3		x		13.12		0.1026
32	4	х		0.002			
ı	5	х		0.382		0.0099	
	6	X		0.002		0.0001	

TABLE 3. CONTINUED 4.

Duct height			le # Evaluating Method		$\Delta A_i \qquad (dB)$		$\Delta arg(A_i)/\pi$	
				La	yer	La	yer	
		up	down	bottom	top-1	bottom	top-1	
	1	х		0.002	0.002			
	2		x		13.456		0.0311	
	3		x		1.014		0.2347	
34	4	x						
	5	x		0.03		0.0006		
	6	x		0.014		0.0006		
	1		х			0.0001	0.0014	
	2		x		1.686		0.2224	
	3		x		4.724		0.0919	
36	4	x						
	5	х		0.006		0.0001		
	6	x		0.02		0.0001	·	
	1		х		0.996		0.0115	
	2		х		4.974		0.0152	
	3	x		*. <u></u> .				
38	4		x		5.052		0.0417	
	5	х				0.0001		
	6	х		0.002				
	1	x		0.002	0.002			
	2		x		3.85		0.1226	
	3		х		3.568		0.1555	
40	4		х		3.448		0.1678	
	5	x		<u> </u>		0.0001		
	6	x						

III. CONCLUSIONS AND RECOMMENDATIONS

A. Performance

This revision of M-Layer converts the extended complex number representation of an exponentially large or small number into the direct representation by its complex exponent. The accuracy of the computation has been improved in two ways: First, an interpolation algorithm has been devised when severe cancellation of the addends is detected. Secondly, accuracy for the evaluation of the Airy function has been improved, not just by summing the Taylor series to double precision resolution and by adopting six-term Gaussian quadrature, but also by expanding the region within which the more expedient Gaussian quadrature is excluded in favor of the more accurate, but time-consuming, Taylor series summation. The improvement in accuracy is most easily seen from Table 1.

As discussed in the Introduction, evaluating the A_i and B_i coefficients either from the lowest layer up (integration up), or from the top layer down (integration down), must result in the same values. This property provides a consistency check for the accuracy of the computation. For the six modes of lowest range attenuation rates of the 20 profiles of different duct heights, Table 1 lists the maximum difference for each mode which shows a discrepancy between these two methods of evaluating the A_i coefficients. For each profile, the maximum value in magnitude

TABLE 1. MAXIMUM DIFFERENCE IN A, COEFFICIENT BETWEEN INTEGRATION UP AND DOWN

		Difference in A coefficient				
Duct height	Mode #		difference in B)	Phase difference over 0.1π		
		old	new	old	new	
	4	5.22		Yes		
02	6	61.16		Yes		
	4	22.46	2.3			
04	5	106.9		Yes		
06	3	8.62		Yes		
	5	32.36				
	5	77.84		Yes		
08	6	44.9		Yes		
10	5			Yes		
	4	69.38		Yes		
12	5	46.32		Yes		
	6	7.46		Yes		
14	6	30.6		Yes		
22	1	8.64		Yes		
24	2	80.48		Yes		
26	2	110.68		Yes		
28	2	150.9	67.68	Yes	Yes	
30	3	173.28	143.42	Yes	Yes	
	1	11.38		Yes		
32	3	525.04	188.04	Yes	Yes	

TABLE 1. CONTINUED

		Difference in A coefficient					
Duct height	Mode #	_	difference in B)		erence over l π		
		old	new	old	new		
	2	37.98		Yes			
34	3	715.7	209.94	Yes	Yes		
	2	112.74		Yes			
36	3	957.92	231.68	Yes	Yes		
	2	107.44	52.26	Yes	Yes		
38	4	1249	255.8	Yes	Yes		
	3	167	112.72	Yes	Yes		
40	4	823.56	258.18	Yes	Yes		
		Magnitude d	lifference within	2dB are not list	ed.		

difference in dB among all the layers is listed if it is greater than 2. If the phases of the coefficients deviate more than 0.1π in any layer, that particular mode is also singled out. The location of the mode of the revised program is within a relative accuracy of 2^{-40} achieved through first order Newton-Raphson iteration. Even though discrepancies still exist when the duct is 28 meters or higher, it is clear that the revised program computes more accurately than the original one.

For the cases where the two methods of evaluating the A_i and B_i coefficients disagree, it has been observed that one of the methods always leads to A_i values which are little changed when the accuracy in mode location is varied, while the other method produces A_i values which shift toward the results of the other method

as the accuracy of mode location improves. Based on this observation, a consistency check is implemented into the program to identify the method which converges better. For the 120 cases investigated, when this method of faster convergence is used, the A_i coefficients obtained from mode locations estimated with or without the Newton-Raphson first order iteration differ only by 0.06 dB in magnitude and 0.0013π in phase at most. In fact, few cases show differences more than 0.002 dB and 0.0001π . This allowed the Newton-Raphson iteration to be removed in this revision.

Table 2 compares the performance between the original and the revised programs. The time spent to find the modes has been reduced by an average of 22.58%. The revised program can always produce the modes found by the original program. Moreover, the mode search is stable for the new program: the time it requires to search for the modes is about the same for similar profiles. The sudden jumps in mode search time for the 24 m and the 40 m cases, which indicate troubles during the search, no longer happen.

With the proper method of evaluating the A_i and B_i coefficients determined by the consistency check, the output of the revised program differs from the original program in some cases. The most serious deviation has been observed for the 38 m duct height case as shown in Tables 3 and 4. For example, at a range of 36.5 km with the transmitter at a height of 25 m and the receiver at 10 m, the coherent path loss is 175.93 dB from the original program, and is 167.90 dB from the revised program.

TABLE 2 OVERALL MODE SEARCH PERFORMANCE COMPARISON

DUCT HEIGHT	ORIGIN	IAL	REVISI	Time	
(meter)	Time	Modes	Time	Modes	Improvement
00	0:00:37	3	0:00:35	3	5.40%
02	0:32:14	9	0:31:55	9	0.98%
04	1:14:12	25	1:05:04	25	12.31%
06	2:10:18	53	1:56:50	53	10.33%
08	0:35:58	39	0:29:25	39	18.21%
10	0:53:24	59	0:48:32	61	9.11%
12	1:09:40	86	1:01:44	89	11.39%
14	1:20:42	94	1:11:13	97	11.75%
16	1:54:35	95	1:18:07	97	31.82%
18	1:45:09	100	1:27:15	104	17.02%
20	1:46:19	103	1:34:20	105	11.27%
22	1:52:54	105	1:35:18	106	15.59%
24	3:42:59	106	1:46:47	107	52.11%
26	2:07:42	106	1:43:55	108	18.62%
28	2:00:05	107	1:44:59	109	12.57%
30	1:59:59	107	1:46:19	108	11.39%
32	1:55:29	108	1:42:58	110	10.84%
34	2:29:57	109	2:15:58	111	9.32%
36	2:31:40	109	2:17:20	112	9.45%
38	2:38:44	110	2:18:09	111	12.97%
40	5:41:17	95	2:39:39	111	53.22%
Total	40:23:54		31:16:22		22.58%

TABLE 3. ORIGINAL PROGRAM 38 M DUCT OUTPUT

freque	ncy =	9600.00	00 mahz				
range (km)	zt (m)	Zr (m)	coherent mode sum (dB)	incoherent mode sum (dB)	coherent path loss (dB)	incoherent path loss (dB)	horizor (km)
27.3	25.0	4.0	-15.30	-15.62	156.10	156.43	28.9
27.3	25.0	6.0	.62	-2.35	140.18	143.16	30.7
27.3	25.0	8.0	-1.11	-4.21	141.92	145.01	32.3
27.3	25.0	10.0	-27.26	-12.66	168.06	153.46	33.6
36.5	25.0	4.0	-16.94	-16.62	160.28	159. 9 6	28.9
36.5	25.0	6.0	73	-2.05	144.07	145.39	30.7
36.5	25.0	8.0	-2.21	-3.72	145.55	147.06	32.3
36. 5	25.0	10.0	-32.59	-14.29	175.93	157.64	33.6
45.8	25.0	4.0	-19.89	-16.96	165.20	162.26	28.9
45.8	25.0	6.0	-2.81	-1.89	148.11	147.19	30.7
45.8	25.0	8.0	-4.11	-3.43	149.41	148.74	32.3
45.8	25.0	10.0	-28.57	-15.22	173.88	160.52	33.6

TABLE 4. REVISED PROGRAM 38 M DUCT OUTPUT

freque	ncy =	9600.00	00 mhz		-		
range (km)	zt (m)	Zr (m)	coherent mode sum (d8)	incoherent mode sum (dB)	coherent path loss (dB)	incoherent peth loss (dB)	
27.3	25.0	4.0	-14.38	-15.66	155.18	156.47	28.9
27.3	25.0	6.0	.42	-2.37	140.39	143.18	30.7
27.3	25.0	8.0	-1.52	-4.21	142.33	145.02	32.3
27.3	25.0	10.0	-21.20	-12.51	162.01	153.31	33.6
36.5	25.0	4.0	-17.32	-16.60	160.66	159.94	28.9
36.5	25.0	6.0	48	-2.08	143.82	145.42	30.7
36.5	25.0	8.0	-1.62	-3.73	144.96	147.07	32.3
36.5	25.0	10.0	-24.56	-14.04	167.90	157.38	33.6
45.8	25.0	4.0	-20.26	-16.93	165.57	162.23	28.9
45.8	25.0	6.0	-3.14	-1.93	148.44	147.23	30.7
45.8	25.0	8.0	-4.62	-3.46	149.92	148.76	32.3
45.8	25.0	10.0	-25.40	-14.90	170.71	160.21	33.6

B. Recommendations

The mode search protocol of this program needs to be revised. Since the search is limited by the number of modes to be found and the maximum range attenuation rate accepted, it is more logical to begin with locating the mode of the lowest attenuation, and then proceed to look for the next one in the order of increasing attenuation rate. Furthermore, there appears to be only a single 'phase line' of vanishing real part of the modal function on which all the modes are located. This line extends from lower to higher range attenuation rates. The partition of the search region into rectangles, as has been done in this program, tends to cut the "phase line" into segments before the program starts to search for the end points of these segments and then follow the segments in different directions. It is clear that a better way for mode search is to find the lower end of the single "phase line" then follow it to the other end.

APPENDIX A: SUBROUTINE XCADD

This Appendix lists the addition subroutine XCADD which returns the complex exponent of the sum when the complex exponents of the addends are given. This is a complete re-write of the original subroutine of the same name.

```
subroutine xcadd(zx.z1x.z2x)
1
2 c
         Given zix and z2x, this subroutine adds the two complex numbers
3 c
         z1=exp(z1x) and z2=exp(z2x) for z=exp(zx) and returns zx.
  c
         inputs...
            z1x=complex exponent of the complex number z1
            z2x=complex exponent of the complex number z2
   c
10
          outputs...
            zx=complex exponent of the complex number z
11
12 c
13 c
          subroutines called...
14
   C******
          implicit real*8 (a-h,o-z)
16
          complex*16 zx,z1x,z2x,zt1x,zt2x,clogzh,dsum,czero,cerrx,cone,chpi
17
18
          parameter(pi=3.141592653589793238462643d0,twopi=2.d0*pi,
             hpi=0.5d0*pi,zero=0.d0,c16=1.d0/6.d0,
19
             bit14=1.d0/16384.d0,bit24=bit14/1024.d0,ctol=bit14,
20
             dpi=2259.d0/4294967296.d0/4294967296.d0,hdpi=dpi/2.d0,
21
             e2m54=-3.742994775023704819d1,e2p27=-0.5d0*e2m54,
22
             chpi=(0.d0,1.57079632679489661923132d0),cone=(1.d0,0.d0),
23
             czero=(0.d0,0.d0),cerrx=(-3.742994775023704819d1,0.d0))
24
25 c
             cerrx=e2m54=-54*log(2)=exponent below machine accuracy
          dimension ztmp(2),stmp(2)
26
27
          equivalence (ztmp,clogzh),(stmp,dsum)
28
    C****
          Replace the input variables with a local variable so that
29
    C
          equations in the form of y=x+y will not lead to confusion.
30
  C
31 c
32
          zt1x=21x
          zt2x=22x
33
34 c
          clogzh=0.5d0*(zt1x-zt2x)
35
36
          dxh=ztmp(1)
37
          if(dxh .lt. zero) then
             zx=zt2x
38
39
             dxh=-dxh
40
          else
             zx=zt1x
41
          end if
42
    C******
43
          machine accuracy = 2**(-53)
    C
          2**(27)=e**e2p27
45 c
```

```
46 c
47
          if (dxh .ge. e2p27) then
48
             return
49
          else
50
             zx=0.5d0*(zt1x+zt2x)
51
             dsum=cdexp(clogzh)
52
             dsum=1.d0/dsum+dsum
53
             if (cdabs(dsum) .gt. ctol) then
                zx=cdlog(dsum)+zx
54
55
             else
          Cancellation is serious. Im[clogzh] is close to pi/2 or -pi/2.
56 c
57
                yi=dnint(ztmp(2)/twopi)*2.d0
58
                ztmp(2)=ztmp(2)-pi*yi
59
                dyi=dpi*yi
60
                if (ztmp(2) .lt. zero) then
61
                   clogzh=-clogzh
                   dyi=-dyi
62
63
                end if
64
                ztmp(2)=(ztmp(2)-hpi)-hdpi-dyi
65
                dsum=2.d0*clogzh*(cone+c16*clogzh*clogzh)
66
                if (dsum .eq. czero) then
67 c
          Note that a complete cancellation of two nonzero numbers of
          order one is considered to be as accurate as what is allowed
68
   C
69
          by the machine and the algorithm.
70
                   zx=cerrx+chpi+zx
71
                else
72
                   dsum=cdlog(dsum)
                   if (stmp(1) .lt. e2m54) stmp(1)=e2m54
73
74
                   zx=dsum+chpi+zx
75
                end if
76
             end if
77
             return
78
          end if
79 c
80
          end
```

APPENDIX B: SUBROUTINE FZEROX

This Appendix includes the listing of the subroutine FZEROX which searches identifies the meshes which may contain modes within a contour rectangle. The Shellman-Morffit mode locating algorithm has been completely replaced.

```
subroutine fzerox(tleft,tright,tbot,ttop,tmsh0,zeros,ni,nf)
 2 c****
3 c fzerox is a routine for finding the zeroes of a complex function, f,
          which lie within a specified rectangular region of the
          complex g11 plane, assuming that the function has only
 5 c
          simple zeroes over this rectangle.
6 c
 7 c
 8 c parameters specifying the search rectangle:
9 c
          tleft - value of the real part of q11 at the left edge.
10 c
          tright- value of the real part of q11 at the right edge.
11 c
          tbot - value of the imaginary part of q11 at the bottom edge.
12 c
                  (this is set to 0.)
13 c
          ttop - value of the imaginary part of q11 at the top edge.
          tmesh - set equal to about half the average spacing between
14 c
                  zeroes within the rectangle. A smaller value may be used
15 c
16 c
                  as a safety measure, but too small a value will result
17 c
                  in excessively long run time.
18 c
          zeros - output list of (complex) values of q11 at which
19 c
                  zeroes are found.
20 c
          nf-ni - the number of zeroes found
21 c
22 c subroutines calledd--
23 c
             findfx
24 c
             roots
25 c
             nomshx
26 c****
27
          implicit double precision (a-h,o-z)
          complex*16 f10, f01, f11, fxnew, fxold, fx00, fx10, fx01, fx11,
28
20
                     czero, one, ci, sol, zeros
30
          parameter(czero=(0.d0,0.d0),one=(1.d0,0.d0),ci=(0.d0,1.d0))
31 $include: 'mlaparm.inc'
  ***** Begin listing of: mlaparm.inc
 1 c
 2 c
            include file to define the
 3 c
                    maximum # of layers (mxlayr)
                    maximum # of modes (mxmode)
 5 c
            parameter (mxlayr=35 )
            parameter (mxmode=127)
  **** End listing of: mlaparm.inc
32
          dimension kedge1(100), kedge2(100), kedge3(100), kedge4(100),
            loc12r(mxmode), loc12i(mxmode), loc23r(mxmode), loc23i(mxmode),
33 c
34 c
             loc34r(mxmode),loc34i(mxmode),loc41r(mxmode),loc41i(mxmode),
             sol(3), theta(2), zeros(2*mxmode+1)
35
36 c
```

```
37 c
38
          common /tmccom/tmesh
39 c****
40
          maxnsq - maximum number of mesh squares allowed on any one
   c
41
             phase line
42 c
          maxnt - maximum number of times fzerox will reduce tmesh
43 c
44
          maxnsq=3*max0(int((ttop-tbot)/tmsh0),int((tright-tleft)/tmsh0))
45
          maxnt=2
46 c****
47
          tmesh = tmsh0
48
          ntime = 0
49
          go to 7
50 c
51 5
          tmesh=tmesh/2.0d0
52
          ntime = ntime+1
53
          if(ntime .gt. maxnt) go to 97
54 c
55 7
          continue
56
57 c****
58 c
          calculate coordinates of rectangle edges in tmesh units
59 c
60
          jlt = idnint(tleft/tmesh-0.5d0)
61
          jrt = idnint(tright/tmesh+0.5d0)
62
          jtop = idnint(ttop/tmesh+1.5d0)
63
          jbot = 0
64 c
65 c
          initialize parameters for starting search at upper left
66 c
          corner of search rectangle
67 c
68
          ki = jtop
69
          kr = jlt
70
          kedge = 1
71
          call findfx(kr,ki,fxnew,xnew,ynew)
72
          nre1=0
73
         nre2=0
74
          nre3=0
75
         nre4=0
76
         knot12=0
77
          knot23=0
78
          knot34=0
79
          knot41=0
         nf=ni
         ni1=ni+1
```

```
82
           go to 15
83 c****
84
    10
           continue
           if(nrzl .lt. 2) go to 15
85
           write(16,2000) nrzl
86
   c
87
           go to 5
88
    15
           nrzl=0
89
           nrsqu = 0
           fxold=fxnew
90
    20
91
           xold=xnew
92
           yold=ynew
93
           go to (21,26,31,36), kedge
    C****
94
95
    C
           search along left edge of rectangle for changes in the
96
           sign of imag(f)
97
    C
98
    21
           continue
99
           if(ki.eq.jbot) then
100
             kedge=2
101
             go to 26
102
           end if
103
           ki = ki-1
104
           call findfx(kr,ki,fxnew,xnew,ynew)
105
           if (yold*ynew .gt. 0.d0) go to 20
106
           if(nre1.eq.0) go to 23
107 c
108 c
           check if crossing point has been previously found
109 c
110
           do 22 k=1,nre1
111
           if(ki.eq.kedge1(k)) go to 20
           continue
112 22
113
114 c
           follow phase line through rectangular region
115
116 23
           fx01=fxold
           fx01r=xold
117
118
           fx01i=yold
119
           fx00=fxnew
120
           fx00r=xnew
           fx00i=ynew
121
122
           li = ki
123
           ir = jit
124
           go to 43
    C****
125
126 c
           search along bottom edge of rectangle for changes in the
```

```
sign of imag(f)
127 c
128 c
129 26
          continue
           if(kr.eq.jrt) then
130
131
              kedge=3
              go to 31
132
           end if
133
           kr = kr+1
134
           call findfx(kr,ki,fxnew,xnew,ynew)
135
           if (yold*ynew .gt. 0.d0) go to 20
136
           if(nre2.eq.0) go to 28
137
138 c
           check if crossing point has been previously found
139 c
140 c
           do 27 k=1,nre2
141
           if(kr.eq.kedge2(k)) go to 20
142
143 27
           continue
144 c
           follow phase line through rectangular region
145 c
146 c
147 28
           fx00=fxold
           fx00r=xold
148
149
           fx00i=yold
150
           fx10=fxnew
           fx10r=xnew
151
152
           fx10i*ynew
            li = jbot
 153
            ir = kr-1
154
 155
            go to 48
 156 c****
 157 c search along right edge of rectangle for sign changes in imag(f).
 158 c
 159 31
            continue
            if(ki.eq.jtop) then
 160
 161
               kedge=4
               go to 36
 162
            end if
 163
            ki = ki+1
 164
            call findfx(kr,ki,fxnew,xnew,ynew)
 165
            if (yold*ynew .gt. 0.d0) go to 20
 166
            id(nre3.eq.0) go to 33
 167
 168 c
            check if crossing point has been previously found
 169 c
 170 c
 171
            do 32 k=1,nre3
```

```
172
           if(ki.eq.kedge3(k)) go to 20
173 32
           continue
174
           follow phase line through rectangular region
175 c
176
           fx10=fxold
177 33
178
           fx10r=xold
179
           fx10i=yold
           fx11=fxnew
180
181
           fx11r=xnew
           fx11i=ynew
182
183
           li = ki-1
           lr = jrt-1
184
185
           go to 53
186 c****
187 c search along top edge of rectangle for sign changes in imag(f).
188 c
189 36
           continue
190
           if(kr.eq.jlt) go to 80
           kr = kr-1
191
192
           call findfx(kr,ki,fxnew,xnew,ynew)
193
           if (yold*ynew .gt. 0.d0) go to 20
           if(nre4.eq.0) go to 38
194
195 c
196
    C
           check if crossing point has been previously found
197
198
           do 37 k=1,nre4
199
           if(kr.eq.kedge4(k)) go to 20
200 37
           continue
201 c
202 c
           follow phase line through rectangular region
203 c
204 38
           fx11=fxold
           fx11r=xold
205
206
           fx11i=yold
207
           fx01=fxnew
208
           fx01r=xnew
           fx01i=ynew
209
210
           li = jtop-1
211
           tr = kr
212
           go to 58
213 c****
    c enter mesh square from left side or exit rectangle at right edge.
214
215
216 41
           lr=lr+1
```

```
if (lr .le. jrt-1) go to 42
217
218
           nre3=nre3+1
219
           kedge3(nre3)=li+1
           go to 10
220
221 42
           fx01=fx11
222
           fx01r=fx11r
223
           fx01i=fx11i
224
           fx00=fx10
225
           fx00r=fx10r
226
           fx00i=fx10i
227 43
           continue
228
           call findfx(lr+1,li+1,fx11,fx11r,fx11i)
229
           call findfx(lr+1,li,fx10,fx10r,fx10i)
230 c******
231 c
           Determine the edge of exit of im(f)=0 from current mesh.
232
           edgeit=fx01i*fx11i
233
           edgeib=fx00i*fx10i
234
           if (edgeib .gt. 0.d0) then
235 c
              Im(f)=0 goes through the 01 to 10 line.
236
              if (edgeit .gt. 0.d0) then
237 c
              Im(f)=0 goes through the 10 to 11 edge (edge 1).
238
                 lout=1
239
240 c
              Im(f)=0 goes through the 01 to 11 edge (edge 2)
241
                 lout=2
242
              end if
243
           else
244 c
              Im(f)=0 goes through the 00 to 10 edge (edge 4)
245
              lout=4
246
              if (edgeit .lt. 0.d0) then
247 c
              Im(f)=0 also runs through 01 to 11 and 10 to 11 edges.
248 c
              Store crossing location and in/out information.
249
                 knot34=knot34+1
250 c
                 loc34r(knot34)=lr
251 c
                 loc34i(knot34)=li
252
              end if
253
           end if
254
255
           go to 60
256
257 c enter mesh square from bottom side or exit rectangle at top edge.
258 46
           li=li+1
259
           if (li .le. jtop-1) go to 47
           nre4=nre4+1
260
261
           kedge4(nre4)=lr
```

```
262
           go to 10
263 47
           fx00=fx01
           fx00r=fx01r
264
265
           fx00i=fx01i
266
           fx10=fx11
267
           fx10r=fx11r
           fx10i=fx11i
268
269 48
           continue
270
           call findfx(lr,li+1,fx01,fx01r,fx01i)
271
           call findfx(lr+1,li+1,fx11,fx11r,fx11i)
272 c*****
           Determine the edge of exit of im(f)=0 from current mesh.
273 c
274
           edgeil=fx00i*fx01i
275
           edgeir=fx10i*fx11i
           if (edgeir .gt. 0.d0) then
276
              Im(f)=0 goes through the 00 to 11 line.
277 c
278
              if (edgeil .gt. 0.d0) then
                 Im(f)=0 goes through the 01 to 11 edge (edge 2)
279
   C
280
                 lout=2
281
              Im(f)=0 goes through the 00 to 01 edge (edge 3).
282 c
283
                 lout=3
284
              end if
285
           else
286
              Im(f)=0 goes through the 10 to 11 edge (edge 1)
   C
287
288
              if (edgeil .lt. 0.d0) then
289 c
              Im(f)=0 also runs through 00 to 01 and 01 to 11 edges.
290 c
              Store crossing location and in/out information.
291
                 knot41=knot41+1
292 c
                 loc41r(knot41)=lr
293 c
                 loc41i(knot41)=li
294
              end if
295
           end if
     C*****
296
297
           go to 60
298
    c enter mesh square from right side or exit rectangle at left edge.
300
301 51
           tr=tr-1
302
           if (lr .ge. jlt) go to 52
303
           nre1=nre1+1
304
           kedge1(nre1)=li
305
           go to 10
306 52
           fx11=fx01
```

```
307
           fx11r=fx01r
           fx11i=fx01i
308
309
           fx10=fx00
           fx10r=fx00r
310
311
           fx10i=fx00i
           continue
312 53
           call findfx(lr,li+1,fx01,fx01r,fx01i)
313
           call findfx(lr,li,fx00,fx00r,fx00i)
314
315 c******
           Determine the edge of exit of im(f)=0 from current mesh.
316
           edgeit=fx01i*fx11i
317
           edgeib=fx00i*fx10i
318
           if (edgeit .gt. 0.d0) then
319
              Im(f)=0 goes through the 01 to 10 line.
320 c
              if (edgeib .gt. 0.d0) then
321
              Im(f)=0 goes through the 00 to 01 edge (edge 3).
322 c
                 lout=3
323
              else
324
              Im(f)=0 goes through the 00 to 10 edge (edge 4)
325 c
                 lout=4
326
              end if
327
328
           else
              Im(f)=0 goes through the 01 to 11 edge (edge 2)
329 c
330
              lout=2
              if (edgeib .lt. 0.d0) then
331
               Im(f)=0 also runs through 00 to 10 and 00 to 01 edges.
332 c
              Store crossing location and in/out information.
333 c
334
                  knot12=knot12+1
                  loc12r(knot12)=lr
335 c
 336 c
                  loc12i(knot12)=li
337
               end if
            end if
338
 339
     C*****
            go to 60
 340
341 c****
 342 c enter mesh square from top side or exit rectangle at bottom edge.
 343 56
            li=li-1
            if (li .ge. jbot) go to 57
 344
 345
            nre2=nre2+1
            kedge2(nre2)=lr+1
 346
            go to 10
 347
 348 57
            fx01=fx00
            fx01r=fx00r
 349
            fx01i=fx00i
 350
            fx11=fx10
 351
```

```
fx11r=fx10r
352
353
           fx11i=fx10i
354
    58
           continue
355
           call findfx(lr,li,fx00,fx00r,fx00i)
356
           call findfx(lr+1,li,fx10,fx10r,fx10i)
357
           Determine the edge of exit of im(f)=0 from current mesh.
358
    C
           edgeil=fx00i*fx01i
359
360
           edgeir=fx10i*fx11i
           if (edgeil .gt. 0.d0) then
361
              Im(f)=0 goes through the 00 to 11 line.
362 c
363
              if (edgeir .gt. 0.d0) then
364 c
                 Im(f)=0 goes through the 00 to 10 edge (edge 4)
365
                 lout=4
366
              Im(f)=0 goes through the 10 to 11 edge (edge 1).
367 c
368
                 lout=1
              end if
369
          else
370
371 c
              Im(f)=0 goes through the 00 to 01 edge (edge 3)
372
              lout=3
373
              if (edgeir .lt. 0.d0) then
374 c
              Im(f)=0 also runs through 00 to 10 and 10 to 11 edges.
              Store crossing location and in/out information.
375 c
376
                 knot23=knot23+1
                 loc23r(knot23)=lr
377 c
378 c
                 loc23i(knot23)=li
379
              end if
380
           end if
381
    C*****
382
383
    Oں
           continue
           nrsqu=nrsqu+1
384
385
           if(nrsqu .gt. maxnsq) go to 95
386 c*****
    c Test for there being at least one re(f)=0 line entering and
387
388
                     leaving the mesh square.
389
           if ((fx00r*fx10r .gt. 0.d0) .and. (fx01r*fx11r .gt. 0.d0)
390
          + .and. (fx00r*fx01r .gt. 0.d0)) go to (41,46,51,56) lout
391
392 c
393 c Computate the values of the modal function at the corners of a
394 c
           a mesh square to determine its Taylor series to the 3rd order
           for estimating its root locations.
395 c
396 c
```

```
397 c
         f00=one
398
         f10=cdexp(fx10-fx00)-one
399
         f01=cdexp(fx01-fx00)-one
         f11=cdexp(fx11-fx00)-one
400
401 c
403 c
         write (16,3001) ni,nf,lr,li,knot12,knot23,knot34,knot41
404 c 3001 format(/' ni, nf, lr, li and knot12, 23, 34 and 43 before ROOTS
        + :1/, 2i6,2x,2i6,2x,4i6)
406 c
407 c******* estimate locations of zeroes by radicals ***********
408 c
409
         call roots(f10,f01,f11,sol,nrsol)
410 c
         do 63 n=1,nrsol
411
412
           ureal = dreal(sol(n))
413
           uimag = dimag(sol(n))
414
           if (ureal .lt. 0.d0 .or. ureal .gt. 1.0d0) go to 63
415
           if (uimag .lt. 0.d0 .or. uimag .gt. 1.0d0) go to 63
           theta(1)=(lr+ureal)*tmesh
416 62
417
           theta(2)=(li+uimag)*tmesh
           nf = nf+1
418
           zeros(nf)=dcmplx(theta(1),theta(2))
419
420
           nrzl=nrzl+1
421 63
         continue
    C************************
423 c
          write (16,3002) ni,nf,nrsol
424 c 3002 format(/' out of ROOTS at 63, ni, nf and # of roots ',3i4)
    C***********************
426 c
          continue following the phase line
427
          go to (41,46,51,56) lout
428 c*****
429 cc
430 80
          continue
431 c
432
          return
433 c****
434
    95
         continue
          write(16,9500)
435
436
           write(16,4001)lr,li,ni,nf,tmesh
437
           write(* ,9500)
438
    4001 format('go to 5 from 95 at lr, li =', i6,',', i6,' ni, nf =', i6,
         +',',i6,', mesh size =',d14.6)
439
          go to 5
440
441 c****
```

```
442 97
          continue
443
           write(16,9700)
444
           write(16,4002)lr,li,ni,nf,tmesh
445
           write(* ,9700)
446 4002 format('go to 5 from 97 at ir, li =1,16,1,1,16,1 ni, nf =1,16,
447
         +',',i6,', mesh size =',d14.6,/'zeroes found are kept.')
448 c
          nf=ni
449 c
450
           return
451 c
452 c**** format statements
453 9500 format(/5x,'too many squares on same phase line -- ',
454
                 'reduce tmesh and start over')
455 9700 format(/5x, tmesh has been reduced but problems remain in',
456
                 ' executing fzerox')
457 c
458
           end
```

APPENDIX C: SUBROUTINE ROOTS

This Appendix contains the listing of the subroutine ROOTS. This subroutine replaces the portion of the subroutine FZEROX where the coefficients of a quadratic equation are determined, and the subroutine QUAD for locating the zeroes of a quadratic polynomial. In the revised subroutine FZEROX, the roots of a cubic polynomial has to be found. This subroutine determines these zeroes by radicals.

```
subroutine roots (f1,f2,f3,sol,nrsol)
3 c This subroutine finds the roots of a third order polynomial by
4 c radicals when the values of this polynomial at z=0, z=1, z=i and
5 c z=1+i are given as f0=1, f1+f0, f2+f0 and f3+f0 respectively.
6 c Note that this algorithm takes cubic roots of two complex numbers
   c (hence the name 'solution by radicals') and use their linear
   c combinations as the roots of a third order polynomial.
   10
         implicit real*8 (a-h, o-z)
         complex*16 f1,f2,f3,zero,one,ci,ep14,em14,ep23,em23,
11
12
                   fa, fb, fc, fd, fa1, fa2, fa3, fa1s, p,q, delt, z, zm, u, v, sol
         parameter (xbit52=52.d0*0.69314718055994531d0,thrd=1.d0/3.d0,
13
                   bit50=1.d0/33554432.d0/33554432.d0,bit51=bit50/2.d0,
14
                   bit52=bit51/2.d0, tol=0.001d0,
15
16
                   zero=(0.d0,0.d0),one=(1.d0,0.d0),ci=(0.d0,1.d0),
17
                   ep14=(0.5d0,0.5d0),em14=(0.5d0,-0.5d0),
                   ep23=(-0.5d0,0.86602540378443864675d0),
18
                   em23=(-0.5d0,-0.86602540378443864675d0))
19
20
         dimension sol(*)
21
         fa=one
22
         fb=(f2-ci*f1+em14*f3)
23
         fc=((ep14+one)*f1-(em14+one)*f2+ci*f3)
24
         fd=(em14*(f2-f1)-ep14*f3)
25
         if (cdabs(fb) .le. bit50) fb=zero
         if (cdabs(fc) .le. bit51) fc=zero
26
27
         if (cdabs(fd) .le. bit52) fd=zero
28
         if (fd .ne. zero) then
29
            fa1=(-thrd)*fc/fd
30
            fa2=fb/fd
31
            fa3=fa/fd
32
            fa1s=fa1*fa1
            p=thrd*fa2-fa1s
33
34
            q=0.5d0*(fa3+fa1*fa2)-fa1*fa1s
35
            if (p .eq. zero) then
36
               if (q. eq. zero) then
37
                 nrsol=1
38
                 sol(1)=fa1
39
                  return
40
               else
41
                 nrsol=3
42
                 u=((-2.d0)*q)**thrd
43
                 sol(1)=u+fa1
44
                 sol(2)=ep23*u+fa1
45
                 sol(3)=em23*u+fa1
46
                  return
47
               end if
48
            else
```

```
49
                if (q. eq. zero) then
                   nrsol=3
50
51
                   sol(1)=fa1
52
                   u=cdsqrt((-3.d0)*p)
53
                   sol(2)=fa1+u
54
                   sol(3)=fa1-u
55
                   return
56
57
                   v=p/q
                   z*p*v*v
58
59
                   absz=cdabs(2)
                   if (absz .lt. tol) then
60
61
                      zm=-z
                       fn=dint(1.d0-xbit52/dlog(absz))
62
63
                       lastn=idint(fn)-1
                       dnn=fn-0.5d0
64
65
                      dnd=fn+1.0d0
                      delt=one
66
                      do 100 nt=1,lastn
67
                          dnn=dnn-1.d0
68
69
                          dind=dind-1.d0
70
                          delt=(dnn/dnd)*delt*zm+one
71 100
72
                       delt=(0.5d0*delt/q)**thrd
73
                       u=p*delt
74
                       v=-1.d0/delt
75
76
                       delt=cdsqrt(one+z)-one
77
                       u=(q*delt)**thrd
                       v≖-p/u
78
79
                    end if
                    nrsol=3
80
                    sol(1)=u+v+fa1
81
                    sol(2)=ep23*u+em23*v+fa1
82
83
                    sol(3)=em23*u+ep23*v+fa1
84
                    return
85
                 end if
86
             end if
87
          else if (fc .ne. zero) then
88
             if (fb .eq. zero) then
89
                 if (fa .eq. zero) then
90
                    nrsol=1
91
                    sol(1)=zero
92
                    return
93
94
                    nrsol=2
                    z=cdsqrt(-fa/fc)
95
96
                    sol(1)=z
```

```
97
                    sol(2)=-z
98
                    return
99
                 end if
100
              else
                 fa1=0.5d0*fb/fc
101
102
                 fa2=fa/fc
103
                 z=fa2/fa1/fa1
104
                 absz=cdabs(z)
105
                 if (absz .lt. tol) then
106
                    fn=dint(1.d0-xbit52/dlog(absz))
107
                    lastn=idint(fn)-1
108
                    dnn=fn-0.5d0
109
                    dnd=fn+1.0d0
110
                    delt=one
                    do 200 nt=1,lastn
111
112
                       dnn=dnn-1.d0
113
                       dnd=dnd-1.d0
114
                       delt=(dnn/dnd)*delt*z+one
115 200
                    continue
116
                    delt=-0.5d0*delt/fa1
117
                    nrsol=2
118
                    sol(1)=fa2*delt
119
                    sol(2)=1.d0/delt
120
                    return
121
                 else
122
                    delt=cdsqrt(one-z)
123
                    nrsol=2
124
                    sol(1)=-fa1*(one-delt)
125
                    sol(2)=-fa1*(one+deit)
126
                    return
127
                 end if
128
              end if
129
           else if (fb .ne. zero) then
130
              nrsol=1
131
              sol(1)=-fa/fb
132
              return
133
           else
134
              nrsol=1
135
              sol(1)=ep14
136
              return
137
           end if
138
           end
```

APPENDIX D: SUBROUTINE ABCOEF

This Appendix contains the listing of the subroutine ABCOEF. The consistency self-checking procedure has been implemented to determine the correct method to evaluate the A_i and B_i coefficients.

```
subroutine abcoef(zero,m)
 1
 2 c****
          For each mode m, this suboutine calculates A-B coefficients in
 3 c
          all layers for combining two linearly independent solutions of
 5
          Stokes' equation to form the height gain function:
   C
 7
              height gain=exp(bcoefx(l,m))*(k1*exp(acoefx(l,m))+k2)
          where k1 and k2 are two independent solutions to Stokes!
   C
          equation. In the top layer (i.e. nzlayr) the height gain is:
10
   c
11 c
12 c
              height gain=exp(bcoefx(l,m))*h2
13
14 c
          where h2 is a solution to the Stokes' equation associated
15 c
          with outgoing energy flow. Here k1 and k2 are proportional
          to the k1 and k2 used by Marcus and the h2 is proportional
16 c
17 c
          to a modified Hankle function of order 1/3.
18
19 c
          inputs...
20 c
            zero-an eigenvalue in q11 space
21
22 c
23 c
            acoefx-two dimensional array of complex exponents
24 c
                   coefficients used to combine two linearly
25
                   independent solutions of stokes' equation
26
            bcoefx-two dimensional array of complex exponents
27
                   coefficients used for normalizing the height gains
28
29 c
              note: acoefx and bcoefx are passed by the
30 c
                    common block /pap2/
31
32 c
          subroutines called...
33 c
            xcdai
34
   c
            xcadd
35
36 c
          common block areas...
37 c
            com1
38 c
            com2
39 c
            pap1
40 c
            pap2
41
    C****
42
43
          implicit real*8(a-h,o-z)
44
          complex*16 acoefx,bcoefx,cqij,h2xq1,dh2xq1,h2xq2,dh2xq2,k1xq1,
45
         $ dk1xq1,k1xq2,dk1xq2,k2xq1,dk2xq1,k2xq2,dk2xq2,h2dk1x,
```

```
46
        $ dh2k1x,h2dk2x,dh2k2x,numax,denax,numbx,denbx,int1x,int2x,
47
        $ hyx,dhyx,k1dhyx,dk1hyx,dk2hyx,k2dhyx,gamma,dgamdq,i,
        $ koa123,rtsumx,zero,q1,q2,sumx,surfno,dqij,dqijdz,sqng,
48
49
        $ dnumbx,dhux,dhlx,e13x,cneg,cldqzl,cldqzm,cigama,koawav,tthd,
50
        + tacoef, dacoef
51
         parameter(downi=1.d-3,downr=1.d-3/0.4342944819032518d0,
52
              pi=3.141592653589793238462643d0,
53
              i=(0.0d0,1.0d0),tthd=(2.d0/3.d0)*i,
54
              cneg=(0.0d0,3.141592653589793238462643d0),e13x=cneg/3.d0)
55
56 c****
57 c
         mxlayr=maximum number of layers allowed
         mxmode=maximum number of modes allowed
58 c
59
60 c
61 c
           use include file for parameters of
           use include file for parameters of
62 c
                   mxtayr max # layers
63 c
                   mxmode max # modes
64 c
65 c
66 $include: 'mlaparm.inc'
  ***** Begin listing of: mlaparm.inc
 2 c
            include file to define the
 3 c
                   maximum # of layers (mxlayr)
                   maximum # of modes (mxmode)
 4 c
 5 c
           parameter (mxlayr=35 )
           parameter (mxmode=127)
  **** End listing of: mlaparm.inc
67 c
68 c
69 c****
70 c
         acoefx-two dimensional complex array used for combining two
71 c
            independent solutions to stokes' equation
72 c
         bcoefx-two dimensional complex array used for normalizing height
73 c
         cqij-two dimensional array containing coefficients for evaluating
74 c
75 c
            qij in terms of q11
76 c
         dqij-array containing coefficients for evaluating qij in terms of
77 c
            q11
78 c
          dqijdz-array containing derivatives of qi(z) in the different
79 c
          zi-array containing input hesights for the modified refractivity
80 c
81
```

```
82
          dimension acoefx(mxlayr,mxmode),
83
                    bcoefx(mxlayr,mxmode),
                     dqij(mxlayr),cqij(mxlayr,2),dqijdz(mxlayr),zi(mxlayr+1)
85
    C****
86
87
           common /com1/freq,waveno,sqng
           common /com2/cqij,dqij,dqijdz,nzlayr
88
89
           common /pap1/nrmode, koa123, surfno, zi
90
           common /pap2/acoefx,bcoefx
91
92 c****
93 c
             check for single layer
94
   C
           set a complex variable koawav=-i*koa123/(waveno*waveno) to
95
   c
96
           avoid repeating computations
97
98
           koawav=-i*koa123/(waveno*waveno)
99
100
           if(nzlayr .eq. 1)then
101
             q1=cqij(1,1)+zero*dqij(1)
102
             call surf(q1,gamma,dgamdq)
103
             call xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)
104
             dh2xq1=dh2xq1+e13x
105
             int1x=cdlog(koawav*dgamdq-q1//qqijdz(1))+2.0d0*h2xq1
106
             int2x=2.0d0*dh2xq1-cdlog(-dqijdz(1))
107
             call xcadd(sumx,int1x,int2x)
108
             rtsumx=0.5d0*sumx
109
             bcoefx(1,m)=-rtsumx
110
             return
111
           end if
112
            cldqzl=cdlog(-dqijdz(1))
113
114
           if I equals one then initialize cumulants and caculate a's and
115 c
           b's in bottom layer using ground boundary conditions.
116
117
118
              q1=cqi j(1,1)+zero*dqi j(1)
119
              call xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)
120
              dk2xq1=dk2xq1+cneg
121
              dk1xq1=dk1xq1-e13x
122
              call surf(q1,gamma,dgamdq)
123
              cigama=cdlog(i*gamma)
              call xcadd(numax,cldqzl-cneg+dk2xq1,cigama+cneg+k2xq1)
124
125
              call xcadd(denax,cigama+k1xq1,cldqzl+dk1xq1)
126
              acoefx(1,m)=numax-denax
```

```
call xcadd(denbx,k2xq1,acoefx(1,m)+k1xq1)
127
128
              bcoefx(1,m)=-denbx
129
130 c
           calculate contributions to normalizing integrals.
131
132
              call xcadd(hyx,k2xq1,acoefx(1,m)+k1xq1)
133
              hyx=bcoefx(1,m)+hyx
134
              call xcadd(dhyx,dk2xq1,acoefx(1,m)+dk1xq1)
135
              dhyx=bcoefx(1,m)+dhyx
              int1x=cdlog(koawav*dgamdq-q1/dqijdz(1))+2.0d0*hyx
136
137
              int2x=2.0d0*dhyx-cldqzl
              call xcadd(sumx,int1x,int2x)
138
139
140
            do 9010 l=2,nzlayr-1
               lm1=1-1
141
               cldqzl=cdlog(-dqijdz(l))
142
143
               cldqzm=cdlog(dqijdz(lm1))
144
               q1=cqij(l,1)+zero*dqij(l)
               call xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)
145
146
               dk2xq1=dk2xq1+cneg
               dk1xq1=dk1xq1-e13x
147
               q2=cqij(lm1,2)+zero*dqij(lm1)
148
               call xcdai(-q2,k2xq2,dk2xq2,k1xq2,dk1xq2,h2xq2,dh2xq2)
149
150
               dk2xq2=dk2xq2+cneg
151
               dk1xq2=dk1xq2-e13x
               call xcadd(hyx,k2xq2,acoefx(lm1,m)+k1xq2)
152
153
               call xcadd(dhyx,dk2xq2,acoefx(lm1,m)+dk1xq2)
154
               k1dhyx=k1xq1+dhyx
155
               dk1hyx=dk1xq1+hyx
               dk2hyx=dk2xq1+hyx
156
               k2dhyx=k2xq1+dhyx
157
158
               call xcadd(denax,cldqzm+k1dhyx,cldqzl+dk1hyx)
               call xcadd(numax,cldqzi-cneg+dk2hyx,cldqzm+cneg+k2dhyx)
159
160
               acoefx(l,m)=numax-denax
161
               call xcadd(denbx,k2xq1,acoefx(l,m)+k1xq1)
162
               numbx=bcoefx(lm1,m)+hyx
163
               dnumbx=bcoefx(lm1,m)+dhyx
164
               bcoefx(l,m)=numbx-denbx
165
166 c
           calculate contribution to normalizing integrals.
167
               int1x=cdlog(-q1/dqijdz(l)+q2/dqijdz(lm1))+2.0d0*numbx
168
169
               call xcadd(sumx,sumx,int1x)
170
               call xcadd(dhux,dk2xq1,acoefx(l,m)+dk1xq1)
171
               dhux=bcoefx(l,m)+dhux
```

```
172
              int1x=2.0d0*dnumbx-cldqzm
173
              int2x=2.0d0*dhux-cldqzl
              call xcadd(sumx,sumx,int1x)
174
              call xcadd(sumx,sumx,int2x)
175
176 9010
            continue
177
178
179
   C
          if I equals nzlayer, calculate a's and b's using outgoing
          wave in top layer.
180
181
              nzm1=nzlavr-1
182
183
              q1=cqij(nzlayr,1)+zero*dqij(nzlayr)
              call xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)
184
              dh2xq1=dh2xq1+e13x
185
              q2=cqij(nzm1,2)+zero*dqij(nzm1)
186
              call xcdai(-q2,k2xq2,dk2xq2,k1xq2,dk1xq2,h2xq2,dh2xq2)
187
188
              dk2xq2=dk2xq2+cneg
              dk1xq2=dk1xq2-e13x
189
190
              call xcadd(hyx,k2xq2,acoefx(nzm1,m)+k1xq2)
              numbx=bcoefx(nzlayr-1,m)+hyx
191
              bcoefx(nzlayr,m)=numbx-h2xq1
192
193
194
          calculate contribution to cumulants.
195
196
              int1x=cdlog(-q1/dqijdz(nzlayr)+q2/dqijdz(nzm1))+
197
              2.0d0*numbx
198
              call xcadd(sumx,sumx,int1x)
199
              call xcadd(dhyx,dk2xq2,acoefx(nzm1,m)+dk1xq2)
200
              dnumbx=bcoefx(nzm1,m)+dhyx
201
              int1x=2.0d0*dnumbx-cdlog(dqijdz(nzm1))
202
              call xcadd(sumx,sumx,int1x)
              dhux=bcoefx(nzlayr,m)+dh2xq1
203
204
              int2x=2.0d0*dhux-cdlog(-dqijdz(nzlayr))
205
              call xcadd(sumx,sumx,int2x)
206
207
          renormalize b's so that height gain integral equals unity.
208
209
              rtsumx=.5d0*sumx
210
              do 9000 ll=1,nzlayr
211
                 bcoefx(ll,m)=bcoefx(ll,m)-rtsumx
212 9000
              continue
213
     214
215
216
```

```
217
           l≖nzlayr
218
           lm1=l-1
219
           cldqzm=cdlog(dqijdz(lm1))
220
           cldqzl=cdlog(-dqijdz(l))
221
           calculate q and associated quantities at bottom of layer l
222 c
223
224
             q1=cqij(l,1)+zero*dqij(l)
             call xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)
225
226
             dh2xq1=dh2xq1+e13x
227
228
             q2=cqij(lm1,2)+zero*dqij(lm1)
             call xcdai(-q2,k2xq2,dk2xq2,k1xq2,dk1xq2,h2xq2,dh2xq2)
229
230
             dk2xq2=dk2xq2+cneg
             dk1xq2=dk1xq2-e13x
231
232
233 c****
234
             Caculate acoefx(lm1,m),bcoefx(lm1,m)
235 c
             and cumulants using outgoing wave in nzlayr
    C****
236
             dh2k1x=dh2xq1+k1xq2
237
238
              h2dk1x=h2xq1+dk1xq2
239
              h2dk2x=h2xq1+dk2xq2
240
              dh2k2x=dh2xq1+k2xq2
241
242
              call xcadd(denax,cldqzl-cneg+dh2k1x,cldqzm+cneg+h2dk1x)
243
              call xcadd(numax,cldqzm+h2dk2x,cldqzl+dh2k2x)
244
245 c If in the nzlayr-1 layer the magnitudes of A coefficients from
        integration up and down differ by less than 0.02 dB and their
        phases differ by less than 0.001pi, the A and B coefficients
248 c obtained from integration up will be accepted.
249
250
              tacoef=numax-denax
251
              dacoef=tacoef-acoefx(lm1,m)
252
              difr=dabs(dreal(dacoef))
           if (difr .lt. downr) then
253
254
              difi=dimag(dacoef)/pi
              difi=dabs(difi-dnint(difi/2.d0)*2.d0)
255
              if (difi .lt. downi) return
256
257
           end if
259
              acoefx(lm1,m)=tacoef
              call xcadd(denbx,k2xq2,acoefx(lm1,m)+k1xq2)
260
261
              bcoefx(im1,m)=h2xq1-denbx
```

```
262
           calculate contributions to cumulants
263 c
264
265
              sumx=cdlog(-q1/dqijdz(l)+q2/dqijdz(lm1))+2.0d0+h2xq1
266
              call xcadd(dhlx,dk2xq2,acoefx(lm1,m)+dk1xq2)
267
              dhix=bcoefx(lm1,m)+dhix
              int1x=2.0d0*dh2xq1-cldqzl
268
269
              call xcadd(int1x,sumx,int1x)
270
              int2x=2.0d0*dhlx-cldqzm
271
              call xcadd(sumx, int1x, int2x)
272
273
            do 9030 l=nzlayr-1,2,-1
274
            Lm1=L-1
275
            cldqzl=cdlog(-dqijdz(l))
            cldqzm=cdlog(dqijdz(lm1))
276
277
278 c
           calculate q and associated quantities at bottom of layer l
279
280
             q1=cqij(l,1)+zero*dqij(l)
281
             call xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)
282
             dk2xq1=dk2xq1+cneg
283
             dk1xq1=dk1xq1-e13x
284
285
             q2=cqij(lm1,2)+zero*dqij(lm1)
286
             call xcdai(-q2,k2xq2,dk2xq2,k1xq2,dk1xq2,h2xq2,dh2xq2)
287
             dk2xq2=dk2xq2+cneg
288
             dk1xq2=dk1xq2-e13x
             dh2xq2=dh2xq2+e13x
289
290
    C****
291
292 c
             Calculate acoefx(lm1,m),bcoefx(lm1,m) and cumulants
293
             using continuity relations in terms of the linearly
294
             independent functions k1 and k2
295
296
              call xcadd(hyx,k2xq1,acoefx(l,m)+k1xq1)
              call xcadd(dhyx,dk2xq1,acoefx(l,m)+dk1xq1)
297
298
              k1dhyx=k1xq2+dhyx
299
              dk1hyx=dk1xq2+hyx
300
              dk2hyx=dk2xq2+hyx
301
              k2dhyx=k2xq2+dhyx
302
303
              call xcadd(denax,cldqzl-cneg+k1dhyx,cldqzm+cneg+dk1hyx)
304
              call xcadd(numax,cldqzm+dk2hyx,cldqzl+k2dhyx)
305
              acoefx(lm1,m)=numax-denax
306
              call xcadd(denbx,k2xq2,acoefx(lm1,m)+k1xq2)
```

```
307
              numbx=bcoefx(i,m)+hyx
308
              dnumbx=bcoefx(l,m)+dhyx
309
              bcoefx(lm1,m)=numbx-denbx
310
311 c
           calculate contributions to cumulants.
312
              int1x=cdlog(-q1/dqijdz(l)+q2/dqijdz(lm1))+2.0d0*numbx
313
314
              call xcadd(sumx,sumx,int1x)
315
              call xcadd(dhlx,dk2xq2,acoefx(lm1,m)+dk1xq2)
              dhlx=bcoefx(lm1,m)+dhlx
316
317
              int1x=2.0d0*dnumbx-cldqzl
318
              int2x=2.0d0*dhlx-cldqzm
319
              call xcadd(sumx,sumx,int1x)
320
              call xcadd(sumx,sumx,int2x)
321
322 9030
              continue
323
324 c****
325 c
           if I equal to one calculate ground
             contribution to cumulants and renormalize bcoefx's
326 c
327
328
             l=1
329
             q1=cqij(l,1)+zero*dqij(l)
             call xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)
330
             dk2xq1=dk2xq1+cneg
331
             dk1xq1=dk1xq1-e13x
332
333
334
             call xcadd(hyx,k2xq1,acoefx(l,m)+k1xq1)
335
             call xcadd(dhyx,dk2xq1,acoefx(l,m)+dk1xq1)
336
             call surf(q1,gamma,dgamdq)
337
             numbx=bcoefx(l,m)+hyx
338
             dnumbx=bcoefx(i,m)+dhyx
339
             int1x=cdlog(koawav*dgamdq-q1/dqijdz(l))+2.0d0*numbx
             int2x=2.0d0*dnumbx-cdlog(-dqijdz(1))
340
             call xcadd(sumx,sumx,int1x)
341
342
             call xcadd(sumx,sumx,int2x)
343
344 c
           renormalize b's so that height gain integrals equal unity.
345
346
             rtsumx=.5d0*sumx
347
348
             do 9020 ll=1,nzlayr-1
340
                 bcoefx(ll,m)=bcoefx(ll,m)-rtsumx
350 9020
             continue
351
```

372	DCOETX(NZ(ayr,s)=-rtsumx
353	
354	
355	return
356	end

LIST OF REFERENCES

- 1. D.E. Kerr, *Propagation of Short Radio Waves*, Peregrinus Ltd, London, United Kingdom, 1987.
- 2. S.W. Marcus (1982), "A model to calculate EM fields in tropospheric duct environments at frequencies through SHF," Radio Science 17(5), 1108-1124.
- 3. V.I. Fock (1965), Electromagnetic Diffraction and Propagation Problems, 414+ix pp., Pergamon Press, New York.
- 4. L.W. Yeoh (1990), "An analysis of M-Layer: a multilayer tropospheric propagation program," *Technical Report NPS-62-90-009*, Naval Postgraduate School, Monterey, California 93943.
- 5. D.G. Morfitt and C.H. Shellman, "MODESRCH, An improved computer program for obtaining ELF/VLF/LF mode constants in an earth-ionosphere waveguide," Interim Report 77T, Naval Ocean Systems Center, San Diego, CA 92152, October 1976.
- 6. Z. Schulten and D.G.M. Anderson, "An algorithm for the evaluation of the complex Airy functions", *Journal of Computational Physics*, Vol. 31, No. 60-75, 1979.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	1
2.	Library, Code 52 Naval Postgraduate School Monterey, CA 93943-5002	1
3.	Department Chairman, Code EC Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5100	1
4.	Professor Hung-Mou Lee, Code EC/Lh Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5100	1
5.	Professor Lawrence J. Ziomek, Code EC/Zm Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5100	1
6.	Han, Yin Yuan 5Fl, No. 10, Lane 165, HSIN-LONG RD. SEC. 4, Taipei Taiwan, R.O.C.	2
7.	Naval Academy Library Kao-Hsiung Tso-Ying P.O. 90175 Taiwan, R.O.C.	1
8.	Ting, Chueh Department of Electrical Engineering Chung Cheng Institute of Technology Tao-Yuan, Tai-Hsi Taiwan, R.O.C.	1